

EEL 5245 POWER ELECTRONICS I Lecture #2: Chapter 1 Introduction to Power Electronics

Discussion Topics

- Definition of Power Electronics
- Industry Overview/Market Share Analysis
- Multidisciplinary Nature of Power Electronics
- The Need for Power Electronics
- Types of Power Conversion
- Figures of Merit for Power Electronics Converters
- Applications for Power Electronic Converters
- Future Trends

- Electronics: Solid State Electronics Devices and their Driving Circuits.
- **Power:** Static and Dynamic Requirements for Generation, Conversion and Transmission of Power.
- **Control:** The Steady State and Dynamic Stability of the Closed Loop system.

POWER ELECTRONICS may be defined as the application of Solid State <u>Electronics</u> for the <u>Control</u> and conversion of <u>Power</u>.

Source: Microtech

National Critical Technology Areas

Technology Category

Technology Area

Source: President's Committee of Advisors on Science and Technology

Historical Perspective

- Traditional power conversion
 - Linear Electronics- Transistors in active mode (linear region)
 - Transistor acts as variable resistor for control
 - Terrible efficiency (50% not uncommon)
 - Low conversion range (greater Vd smaller efficiency)
 - Low power applications
 - Motor-Generator Sets (AC-DC or AC-AC)
 - Can still be found in use
 - Large physical size
 - Maintenance intensive
 - Low efficiency
 - Poor Load regulation

Modern Power Electronics

- Can have efficiencies approaching 100%
 - Uses switches in saturation mode (On of Off)
 - On state-resistance can be down in tenths of Ohms
- Are much smaller than predecessors
 - High switching frequency means smaller magnetic components.
 - Reduced losses means smaller package size
- Net effect is better efficiency, greater power density (5W/ in^3 attainable)

Simplified Block Diagram of a Power Electronics System

Detailed Block Diagram of Power Electronics System

Multidisciplinary Nature of Power Electronics

- Power electronics is comprised of:
 - Semiconductor Devices
 - Analog Circuits
 - Control Design
 - Magnetics
 - Electric Machines
 - Power Systems Engineering
 - Circuit Simulation

Power Electronics Focus Areas

Fig. 1.1 Power Electronics encompasses three Technologies: Conversion, Power Semiconductor, and Power Control Technologies

Growth In Power Electronics

- The technology boom of the semiconductor market creates power devices with significant power handling and switch speed capability (ICs for control as well)
- The expanding market demand for new power electronic applications that require the use variable-speed motor drives, regulated power supplies, robotics, uninterruptible power supplies.
- The ever increasing demand for smaller size and lighter weight power electronic systems.
- A result of this increasing reliance on power electronic systems made it mandatory that all such systems have radiated and conducted electromagnetic interference (EMI) be limited within regulated ranges.

The Drivers for Power Electronics

- Primary Factors Locally (KSC/Florida)
 - Microprocessor-based technology has been producing devices that often require tight regulation and uninterruptible power
 - Increased sensitivity to power system harmonics
 - Energy Conservation and Environmental Management are now grouped within US Domestic Policy and are receiving significant focus from Bush Administration
 - New Legislation from Bush on Energy Conservation Requirements
 - New Florida Building Code will Require Variable Speed Air Handlers
 - Industrial Process Control and Automation is BOOMING with new/refined motor drive applications
 - HVAC (VAV, Chilled Water Flow, Chiller)
 - Elevator Drives (DC Drives)

Power Flow Unidirectional: input-to-output

Power Flow – Bi-directional

Power Conversion Dictates Change in Current and/or Voltage:

- Voltage/Current form *ac* or *dc*
- Voltage/Current level (magnitude)
- Voltage frequency (line or otherwise)
- Voltage/Current waveshape (sinusoidal or nonsinusoidal such as square, triangle, sawtooth, etc.)
- Voltage phase(single or three-phase).

Conversion Type Description

• Power Electronic systems perform one or more of the following conversion functions:

a)Rectification (*ac*-to-*dc*)

- b) Inversion (*dc*-to-*ac*)
- c) Cycloconversion

(*ac*-to-*ac* different frequencies) or (*ac*-to-*ac* same frequency)

d) Conversion (*dc*-to-*dc*)

Types Of Power Conversion

 V_i

(a)

Figures of Merit

for Power Electronic Converters

- What is the objective?
 - Overall goal: To produce a converter that performs well in these areas:
 - Efficiency
 - Transient Response
 - Load and Line Regulation
 - Power Density
 - Input/Output Distortion (Input Power Factor)
 - Reliability (MTBF)
 - Cost
 - In the final analysis, the job is to process and control the flow of electric energy by supplying currents/ voltages in a form most suited to both the load and energy source

Industrial Applications

- SMPS
 - PFC
 - Universal Input
 - Soft-Switching
- Uninterruptible Power Supplies
 - Hot-Sync Paralleling
- Process Control
 - Motor Drives (DC Drives-VSDs, VFD)

Motor Drive

Classic Inverter Scheme

Typical CommercialPower Supply-Univ. PFC 600V

INPUT CHARACTERISTI	cs				
Parameter	PFC Mini	PFC Micro	PFC MicroS	Units	Notes
AC Input					
Voltage		85-264		Vac	
Frequency		47-500		Hz	
DC Input	100-380	100-	-300	Vdc	
Line Regulation		0.4		%	From low line to high line
Inrush Current					
@ 115Vac	30		5	A rms	
@ 230Vac	60	1	0	A rms	
Ride Through Time		>20		ms	
@ load	1,200	50	00	W	
Conducted EMI/RFI	FCC Class A	FCC Class A			PFC Mini with 1st Gen units
	EN55022 Class A	EN 55022 C	lass A (consult factory)		meets FCC & EN Class B
Power Factor		>0.98			>75% load
Harmonic Current Limits		EN61000-3-2/A14			Class A
OUTPUT CHARACTERI	STICS				
Parameter	PFC Mini	PFC Micro	PFC MicroS	Units	Notes
Setpoint Accuracy		0.5		%	of Vnom
Load Regulation		0.05		%	10% to full load
		0.2		%	No load to full load
Temperature Regulation		0.005		%/°C	-20º to +65ºC
Long Term Drift		0.02		%/khr	
Output Ripple & Noise					
≤10Vout		100		mV	20 MHz bandwidth
>10Vout		1.0		% Vout	20 MHz bandwidth
Voltage Irim Range		50.440		04 M	1000 10 15 16-1
1st Gen Slots		50-110		% Vout	±10% on 10-15 Vout
2nd Gen Slots	ation	10-110		% Vout	Autospace (See page 2)
OVD Set Deint	auon	125		W March	Autosense (See page 2)
Current Limit		125		% loox	Auto recevery
				200 H H H H H	

Typical Commercial Power Supply-Universal PFC 150W

OUTPUT SPECIFICATIO	ONS				
Total regulation (Line and load)	Main output Auxiliary outputs	±2.0% ±5.0%			
Rise time	At turn-on	1.5s, max.			
Transient response	Main output 75% to 100% n step at 0.1A/µs	5.0% or 250mV nax. dev., 1ms max. recovery to 1%			
Temperature coefficient		±0.02%/°C			
Overvoltage protection	Main outputs	125%, ±10%			
Short circuit protection	Cyclic operation	Continuous			
Minimum output current	Single and multiple	See table			
INPUT SPECIFICATION	S				
Input voltage range	Universal input	90 to 264VAC			
Input frequency range		47Hz to 63Hz			
Input surge current	264VAC (cold start)	40A max.			
Safety ground leakage current	264VAC, 60Hz	0.99mA			
Input current	120VAC @ 150W 230VAC @ 150W	1.95A rms 1.10A rms			
Input fuse	UL/IEC127	F3.15A H, 250VAC			
ELECTROMAGNETIC COMPATIBILITY SPECIFICATIONS (10)					
Conducted emissions Radiated emissions Harmonic current emission correction ESD air ESD contact	EN55022, FCC part EN55022, FCC part EN61000-3-2 EN61000-4-2 EN61000-4-2	15 Level B 15 Level A Compliant Level 3			

ELECTROMAGNETIC	Compatibility spi	ECIFICATIONS (11)
Surge Fast transients Radiated immunity Conducted immunity	EN61000-4-5 EN61000-4-4 EN61000-4-3 EN61000-4-6	Level 3 Level 3 Level 3 Level 3
GENERAL SPECIFICAT	TIONS	
Hold-up time	120VAC @ 60Hz	20ms ⊜ 150W
Efficiency	120VAC @ 150W	73% typical
Isolation voltage	Input/output Input/chassis	3000VAC 1500VAC
Approvals and standards pending	EN60950 UL1950,	0, VDE0805, IEC950 CSA C22.2 No. 950
Weight		540g (19oz)
MTBF (@ 25"C)	MIL-HDBK-217F Bellcore	350,000 hours min. 800,000 hours min.
		-
ENVIRONMENTAL SPE	ECIFICATIONS (8)	
ENVIRONMENTAL SPE	CIFICATIONS (®) Operating ambient, (See derating curve Non-operating 50°C to 70°C ambie convection cooled 0°C to 50°C ambie convection cooled 0°C to 50°C ambie 300LFM forced air Peak (0°C to +50°C	0°C to +50°C -40°C to +85°C ent, Derate to 50% load nt, 110W nt, 150W
ENVIRONMENTAL SPE Thermal performance Relative humidity	CIFICATIONS (®) Operating ambient, (See derating curve Non-operating 50°C to 70°C ambie convection cooled 0°C to 50°C ambie convection cooled 0°C to 50°C ambie 300LFM forced air Peak (0°C to +50°C Non-condensing	0°C to +50°C -40°C to +85°C ent, Derate to 50% load nt, 110W nt, 150W C) 5% to 95% RH
ENVIRONMENTAL SPE Thermal performance Relative humidity Altitude	CIFICATIONS (®) Operating ambient, (See derating curve Non-operating 50°C to 70°C ambie convection cooled 0°C to 50°C ambie convection cooled 0°C to 50°C ambie 300LFM forced air Peak (0°C to +50°C Non-condensing Operating Non-operating	0°C to +50°C -40°C to +85°C ent, Derate to 50% load nt, 110W nt, 150W C) 5% to 95% RH 10,000 feet max. 30,000 feet max.
ENVIRONMENTAL SPE Thermal performance Relative humidity Altitude Vibration (See Note 6)	CIFICATIONS (®) Operating ambient, (See derating curve Non-operating 50°C to 70°C ambie convection cooled 0°C to 50°C ambie convection cooled 0°C to 50°C ambie 300LFM forced air Peak (0°C to +50°C Non-condensing Operating Non-operating 5Hz to 500Hz	0°C to +50°C -40°C to +85°C Derate to 50% load nt, 110W nt, 150W C) 5% to 95% RH 10,000 feet max. 30,000 feet max. 2.4G rms peak

Future Trends

- Continue in the technological improvement of high power and high frequency semiconductor devices.
- Attempts to improve energy density with increased efficiency and performance
- Improvement in the design of driver circuits for switching devices (DSP)
- Improvement in control techniques including optimal and adaptive control.
- Integration of power and control circuitry on a single IC
- Distributed Power Systems (DPS).
- Power factor correction techniques and EMI reduction.
- New Power Transmission Concepts

UCF Power Electronics FloridaPEC

Florida Power Electronics Center Director: Dr. Batarseh http://apec.engr.ucf.edu

- Power Factor Correction (PFC) circuits
- Soft-Switching DC-DC Converters
- Low Voltage AC-DC and DC-DC converters
- Low Voltage high-current fast-transient VRMs
- Dynamic Modeling and Control
- Electromagnetic Interference and Compatibility (EMI/ EMC)
- Modeling of Power Devices
- Solar/Wind Source Converters