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ABSTRACT 
 

 In this Dissertation, which concentrates on discrete modeling for control purposes of 

DC/DC converters and simulation through symbolic techniques. A Unified Discrete State-Space 

Model for power converters in CCM is presented. Two main approaches to arriving at the 

discrete model are used. The first approach involves an impulse function approximation of the 

duty cycle modulation of the converter switches, and this approach results in a small signal 

discrete model. The Second approach is direct and does not involve any approximation of the 

modulation, this approach yields both a large signal nonlinear discrete model and a linear small 

signal model. Harmonic analysis of the converter's states at steady-state  is done for steady-state 

waveform acquisition, which increases the accuracy of the model especially for finding the 

control to inductor current frequency response. Also the harmonic Analysis technique is used to 

both obtain the response of the converter to a load transient and to finding the optimal duty cycle 

response that minimizes the disturbance. Finally the Discrete model is verified for the Half-

Bridge DC/DC topology for its three main control schemes (Asymmetric, Symmetric, DCS). A 

GUI platform in MATLAB is presented as a wrapper that utilizes the models and analysis 

presented in this thesis. Symbolic simulation techniques are developed in general manner for 

linear piecewise circuits and then through State-Space formalism specialized for DC/DC 

converters. A general symbolic solver programmed in JAVA that implements said techniques is 

presented. 
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1 CHAPTER 1  
INTRODUCTION 

 

1.1 Need for automatic control in PWM converters 
 

Since the inception of SMPS converters (Switched Mode Power Supply) it was known 

that operation without regulation is not adequate for cases where the load is variable, or the 

parameters of the converter change either intentionally or through aging. That is why automatic 

control is widely implemented in switching converters and open loop operation is nonexistent. 

Depending on the topology used there are many different control schemes available. One 

of the earliest is to control the on and off times of the switches in a SMPS and to vary their 

values depending upon how far the system is off the desired operational range. Another 

technique is to control another parameter in the circuit and use that parameter to regulate the 

output , essentially having two control loops , an inner and an outer one. Current Mode 

Programming (whether peak or averaged) is the most famous example for this type of control , 

were there is an inner loop that controls the inductor current and then an outer loop controlling 

the reference to the previous loop , the output voltage being dependant on the inductor current. 

This control technique is popular since it simplifies the outer control loop because the power 

stage is essentially operating as a voltage controlled current source. A third method of automatic 

control is achieved through varying the switching frequency, and this method is prevalent in soft 

switching topologies. 
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Due to this immense importance for automatic control in the switched power field the 

question arises as to how to close the loop on the converter, that is how to design an appropriate 

compensator to maintain stability at the required operating point. It is apparent that the powerful 

tools of Linear Control Theory (frequency domain theories) and Modern Control Theory  (time 

domain theories) cannot be used directly for DC/DC converter since they are highly nonlinear 

systems. The rest of this chapter will describe the different approaches for solving this problem. 

Compensator

Load

DC/DC
Power Stage

Vref

d
( )DutyCycle

gV
outV

 

Figure 1-1 :  Illustration of regulation through duty cycle control 
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1.2 Average Continuous Modeling of PWM converters 
 

Since the power converter is not just nonlinear but also of piecewise switched nature, 

averaging techniques must be used to obtain a continuous model, which is then linearized using 

small signal perturbation. Middlebrook and Cuk (1) pioneered this field in the late seventies 

using state space averaging, and later others (2) -(3) like Vorperien introduced circuit oriented 

average models. Both methods differ only in form, the second being more popular since circuit 

oriented analysis is ubiquitous in the electrical engineering community, and engineers prefer to 

deal normally with circuits rather than matrices. Another reason for the preference for circuit 

oriented methods is the ease by which they can be implemented in popular circuit simulation 

software like PSPICE.  

Such so called small signal analysis of the system can yield for moderately complex systems 

very complex and tedious symbolic expressions of the transfer functions of interest. Those 

expressions are called “high entropy expressions” (a term coined by Middlebrook) . There are 

many ways of dealing with such complex systems, one is order reduction; i.e. applying some 

simplifying assumptions to the system. Order reduction can be piecewise in frequency meaning 

that the simplifying assumptions can be different for different frequency ranges, this decreases 

reduction errors and as an example is used in (4). Another is empirical, and is to simply bypass 

the analysis stage and use a frequency response analyzer to obtain the open loop transfer 

function. But the main disadvantage in this case is the lack of insight into the effect of the 

various components and parameters on the dynamics of the system 
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The State-Space Average Modeling is the most general method of the two , it requires 

translating the DC/DC converter into State-Space representation for each switching mode, that is 

for each piecewise linear region in time. Since this method involves matrix algebra Modern 

Control techniques can be easily exploited. Although even if this method is used most prefer to 

derive transfer functions from the resultant model so as to use traditional control techniques. To 

show how this works assume the topology of interest has two modes of operation, and each 

mode can be described with the following State-Space equations, for Mode I, 

d
dt

= +1 1
x A x B u

                                                            (1.1) 

y = +1C x D u1                                                              (1.2) 

and Mode II, 

d
dt

= +2 2
x A x B u

                                                             (1.3) 

y = +2 2C x D u                                                                (1.4) 

And the duration of Mode I is dTs and of Mode II is d`Ts when d is the Duty cycle at the 

particular operating point and d`=1-d . Then (1) proves that the power stage can be approximated 

by the following continuous State-Space model, 
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d
dt

= +avg avg
x A x B u

                                                    (1.5) 

y = +avg avgC x D uG
                                                     (1.6) 

where, 

d d′= +avg 1A A 2A                                                       (1.7) 

d d ′= +avg 1B B 2B                                                        (1.8) 

d d ′= +avg 1C C 2C                                                      (1.9) 

d d ′= +avg 1D D 2D                                                   (1.10) 

Equations (1.5) and (1.6) represent a continuous average model, but it is still not linear with 

respect to the duty cycle as input. The way to achieve the linear model which by nature is small-

signal is to apply small signal perturbations to all the variables in (1.5)-(1.6), and then to group 

the DC and small signal parts separately. Doing so gives, 

( )ˆ ˆ ˆˆ ( )g g
d x v V
dt

d⎡ ⎤= + + − + −⎣ ⎦avg avg 1 2 1 2
x A B A A X B BG

                      (1.11) 

( ) ˆˆ ˆy x= + −avg 1 2C C C dX                                                 (1.12) 
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where, 

1
gV−= −X A B                                                                (1.13) 

1
gY −= −CA BV                                                               (1.14) 

Equations (1.11)-(1.12) represent the desired linear small signal model useful for designing an 

appropriate compensator. A transfer function can be extracted from it through applying the 

Laplace transform and it turns out to be, 

( )
( )

( ) ( ) ( )1ˆ
( )ˆ g

Y s
s V

d s
−
⎡ ⎤= − + − − + −⎣ ⎦1 2 avg avg 1 2 1 2C C X C I A A A X B B

           (1.15) 

The circuit oriented Average modeling methods are numerous but all depend on 

averaging all currents and voltages  in the converter circuit over one switching period. Vorperian 

[2] introduced a methodology similar to the one used for analyzing a transistor circuit were the 

block in the circuit containing the switching devices is examined and replaced  by a closely 

equivalent average  model consisting or dependent voltage and current sources. The blocks to be 

replaced are as shown in figure 1-2 for the three main switching topologies. 
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a c

p a

c p

R

c

p

a

R

(a) (b)

(c)

 

Figure 1-2 : Switching components cell in each of the three main Topologies: (a) Buck, (b) 

Boost, (c) Buck-Boost 
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Figure 1-3 : Switching Cell Block 

 

Figure 1-1 shows a detail of the switching cell block, it is a three terminal block were the 

‘c’ node represents where the inductor is connected and the ‘a’ node is at the terminal were the 

active switch is, likewise the ‘p’ node is where the passive diode is. The heart of this modeling 

method is to examine the waveforms in general across the terminals of the block and try to relate 

their average values together. For example for the special case were the topology is operating in 

DCM the currents ia(t) and ip(t) look as shown in Figure 1-4, and the Continuous Model that can 

be deduced from the averaging of  these waveforms that are shown in Figure 1-5. (2) showed that 

this equivalent circuit of the block has , 

2 2

2 2
cp ac

s a s

v vd d
LF i LF i

μ = =
p                                                (1.16) 
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so it is still a nonlinear model and  linearizing it requires applying small signal perturbation 

which yields, 

0 0
ˆˆ ˆ ˆp f aci g v k d g v= + − cp                                           (1.17) 

where, 

22 2
2

p ac
o

s cp

I DV
k

D LF V
= =

                                                  (1.18) 

2 2

22

I D Vp acgo Vcp LF Vs cp
= =

                                                (1.19) 

22 2
2

p ac
f

ac s cp

I D V
g

V LF V
= =

                                              (1.20) 

And, 

ˆˆ ˆa i ac ii g v k= + d
                                                    (1.21) 

Where, 

2

2
a

i
ac s

I Dg
V L

= =
F                                                          (1.22) 

2 2
2

a a
i

c

s

I DVk
D LF

= =
                                                        (1.23) 
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Figure 1-4 : Cell Block Waveforms in the case of DCM 

 

Figure 1-5 : Cell Block continuous model for DCM 
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And therefore the small signal equivalent circuit is as shown in figure 1-6, see (2). It was said 

that one advantage of a circuit oriented approach is the ease by which the model can be 

implemented in PSPICE, so for demonstration purpose the Buck circuit in figure 1-7 was 

simulated both in original switching form and with the average model. Figure 1-8 displays the 

control to output voltage frequency response obtained and figure 1-9 compares the average 

model vs actual responses. 

 

Figure 1-6 : Small-Signal equivalent circuit 
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Figure 1-7 : Simulation of actual buck circuit and average model in PSPICE 
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Figure 1-8 : Frequency response of Buck , (a) Magnitude , (b) Phase 
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           Time

5.600ms 5.800ms 6.000ms 6.200ms 6.400ms 6.600ms5.418ms 6.769ms
V(Voavg) V(Vo)

4.00V

5.00V

3.66V

5.68V

 

Figure 1-9 : Comparison between Average Model vs actual circuit simulation 

 

1.3 Introduction to Digital Control and Discrete modeling of PWM converters 
 

Conventional averaging methods for dynamic modeling yield models that are inaccurate at 

the upper frequency range because they ignore the sampled nature of the Duty Cycle signals that 

drive the power stage. Furthermore they predict frequency response content at higher than half 

the switching frequency, of course such information is meaningless.   

One objective of this dissertation is to derive a general unified large and small discrete-space 

models for PWM converters in CCM so as they can be utilized for digital control of the power 

stage. It was shown in (5) that discrete models are more accurate in predicting the dynamics of 

switching converters since switching is a naturally discrete phenomena and as thus the 

methodology used there will be implemented in this work. The main line of attack will be the 
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recognition of the different modes of operation of the power stage and finding their state space 

matrices. This can be done since in each mode the converter is essentially a linear system. 

Ultimately the transient and forced time responses within each mode are derived and after 

relating them with each other a discrete state-space system can be deduced. Thus we arrive at the 

discrete model and having it in state-space form makes it versatile since it can be used to obtain 

pulsed filter transfer functions or simply plugged directly into a numerical package like 

MATLAB. Different control techniques and different topologies will result in different modes of 

operation thus alter the results of the model. 

One of the useful utilizations of the discrete model is to obtain frequency response curves for 

the open loop power stage. Phase and gain margin techniques can then be used to design an 

appropriate compensator for stabilization of the closed loop response and furthermore the 

compensator can be discretized and implemented through a DSP controller. Such a methodology 

is an indirect digital design method since the compensator is first designed in the analog domain 

and then mapped into the digital domain. Having a discrete model of the Power stage in the first 

place makes it prudent to use a direct design method such as pole-placement where the 

coefficients of the digital compensator are directly obtained. 

The discrepancy in the frequency response between the discrete models derived in this 

dissertation and the average continuous models is examined in chapter 5 for the Half-Bridge 

topology, and is found to be substantial at high frequencies approaching one half the switching 

frequency. 
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1.4 Need for Simulation of PWM converters 
 

After the design phase of any technological artifact ends and before production is started 

adequate testing is required to insure the device will work as planned and within the desired 

parameters. Prototypes in such case are extremely useful, but still, for the verification of new 

concepts simulation is necessary before embarking on the expense of prototype building. The 

purpose of simulation is to predict how the system will operate, and its basis is the theoretical 

laws that govern its components and their interactions. 

 

1.5 Dissertation Outline  
 

After this introductory chapter of this dissertation chapter 2 will start with an overview of 

the general switched State -Space equation describing the operation of DC/DC converters. Then 

for the purpose of increasing the accuracy of the modeling the problem of evaluating the Steady-

State waveforms is attacked using a Fourier analysis technique, and sample MATLAB code 

demonstrating how to implement the analysis results. 

 Chapter 3 and 4 commence with the task of Discrete modeling .Both chapters incorporate 

any general topology with at most two switches and two freewheeling modes where the phase 

shift between the duty cycle pulses is a variable within the models. Chapter 4 uses an impulse 

approximation of the duty cycle modulations to somewhat simplify the analysis that ends up with 

a small signal model, it also examines the large signal discrete model and introduces small-signal 

analysis directly to it without any impulse approximations. Finally chapter 5 applies the 
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developed models to the Half-Bridge DC/DC converter for all its prominent control methods 

(Symmetric, Asymmetric and DCS). Then Chapter 6 presents a GUI platform developed in 

MATLAB as an implementations of the models of this dissertation, this platforms is essentially 

used to aid digital controller design.  

Chapter 7 is concerned with symbolic simulation and details SYMCIRC, a Java based 

symbolic circuit solver. Chapter 8 examines symbolic simulation using state-space 

techniques.Chapter 9 is the conclusion and future work section of this dissertation. 
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2 CHAPTER 2  
OVERVIEW AND STEADY-STATE HARMONIC ANALYSIS 

 

2.1 General State-Space Switched Model 
 

Any switching power converter has switches that turn on and off in a predetermined manner 

to alter between different modes of operation and therefore achieve power transfer in a controlled 

way. A general State-Space switched equation is presented here to account for the very general 

case of converters that have two switches or less and two freewheeling modes or less. That is not 

to say other situations are not accounted for, as will be explained later. So the general switching 

equation, assuming the converter has two switches S1 and S2, is, 

[ ] [1 1 2 3 1 1 2 3( ) ( ) ( ) ( ) ( ) ( ) ] g
d d t d t d t d t d t d t v
dt

= + + + + +2 3 2
x A A A x b b b3

n
ise

on
ise

               (2.1) 

where d1(t), d2(t) and d3(t) in steady state operation are as shown in Figure 2-1, and their 

definition is, 

( )1

1 if S1 o
0 Otherw

d t
⎧

= ⎨
⎩                                                  (2.2) 

( )2

1 if S2
0 Otherw

d t
⎧

= ⎨
⎩                                                   (2.3) 

And, 

( ) ( ) ( )3 11d t d t d t= − − 2                                                         (2.4) 
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In Figure 2-1 there is a phase shift α between the duty pulses for S1 and S2 , this phase 

shift is useful when a certain topology like the Half-Bridge has different control schemes 

controlled by the phase shift between the different duty cycle pulses. It will be shown in chapter 

5 that this phase shift does affect the dynamics of the converter in a visible manner. 

snT 1( ) sn D T+ 1 2( ) sn D D Tα+ + +

1( )d t

2 ( )d t

3 ( )d t

1D

2D

t

t

t

1

1

1

α

1 21 D D− −

 

Figure 2-1 : Switching functions 1 ( )d t  and 2 ( )d t for two switches in steady-state. 
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snT 1( ) sn D T+ 1 2( ) sn D D Tα+ + +

1̂( )d t

2
ˆ ( )d t

3
ˆ ( )d t

t

t

t

1

1

1

1̂Un sd T

2
ˆ

Un sd T 2
ˆ

Ln sd T

1̂Ln sd T

 

Figure 2-2 : Perturbation of Switching functions  and  for two switches 1̂( )d t 2
ˆ ( )d t

 

2.2 Small Signal perturbation 
 

Since it is desired to obtain a dynamic model from the switched state-space form the first 

step whether the main interest is discrete or continuous modeling is to apply small signal 

perturbation about steady state conditions. The particular notation used here marks all steady 

state signals with a bar over the variable ( a ) while small signal perturbations are marked with 

the hat symbol ( ). The components of each state variable, switching functions and the input 

voltage are, 

â

1 1 1 2 2 2
ˆ ˆˆ ˆ, ( ) ( ) ( ) , ( ) ( ) ( ) , g g gx x x d t d t d t d t d t d t v V v= + = + = + = +  
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And when substituted into (2.1) they cause its decomposition into two equations, a 

steady-state one and a small-signal one. The Steady-State equation is, 

( )
( )

1 2 1 21

1 2 1 2

( ) ( ) 1 ( ) ( )

( ) ( ) 1 ( ) ( ) g

d d t d t d t d t
dt

d t d t d t d t V

⎡ ⎤= + + − −⎣ ⎦

⎡ ⎤+ + + − −⎣ ⎦

2 3

1 2 3

x A A A

b b b

x

                       (2.5) 

While the small signal equation is, 

( )
( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 21

1 2 1 2

1 1

2

ˆ ˆ( ) ( ) 1 ( ) ( )

ˆ( ) ( ) 1 ( ) ( )

ˆ ( )

ˆ ( )

g

g

g

d d t d t d t d t
dt

d t d t d t d t v

V t d t

V t d t

⎡ ⎤= + + − −⎣ ⎦

⎡ ⎤+ + + − −⎣ ⎦
⎡ ⎤+ − − −⎣ ⎦
⎡ ⎤+ − − −⎣

2 3

1 2 3

1 3 3

2 3 2 3

x A A A

b b b

b b A A X

b b A A X ⎦

x

                        (2.6) 

The small signals   and    are the small signal perturbations of the switching 

signal and are as shown in figure 2-2. So now the stage is set for the derivation of a small-signal 

discrete model from equation (2.6).But first operation of the converter at steady state needs to be 

considered. This is due to the fact that  

1d̂ (t) 2d̂ (t)

( )tX  is a component of equation  (2.6). 
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2.3 Motivation  for Harmonic Analysis 
 

Throughout the literature (1)-(6) the small ripple approximation is incorporated into the 

analysis either for obtaining the steady-state operation point for its own sake or because the 

derived small-signal dynamic model requires it as an input parameter. But while the small ripple 

approximation is reasonable for any capacitor voltage in the converter it certainly is not for 

inductor currents. In the context of a continuous average model (1) errors from this assumption 

will not be significant since all state variables are averaged anyway , but it will make a difference 

for models (discrete or not) that depend on the values of the states at different instants of time in 

one switching cycle. The model derived in this dissertation needs the values of the states at the 

instants where the converter switches from one mode to another , and that is the justification for 

the analysis presented in later sections. 
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2.4 Fourier Series 
 

Going back to equation (2.5) since x  is the steady state vector and is periodic with 

respect to time.Fourier analysis can be applied to it and it can be represented in the following 

fourirer series form, 

2

s

nj t
T

n
e

π∞

=−∞

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝
∑ nx X

⎠                                                           (2.7) 

where nX  is the nth  complex Fourier coefficient (harmonic) of ( )tx . And in a similar fashion 

other periodic functions of time in (2.5) can be decomposed as, 

2

s

n

nj t
T

g g
n

V V e
π∞

=−∞

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝
∑

⎠                                                          (2.8)
 

where , 

( )
2

0

1 s

s

n

nT j t
T

g g
s

V V t e
T

π
−

= ∫ dt
                                                     (2.9) 

Also, 

( )
2

1 1
s

nj t
T

n
d t D e

π∞

=−∞

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝
∑ n

⎠                                                    (2.10) 

( )
2

2 2
s

nj t
T

n
d t D e

π∞

=−∞

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝
∑ n

⎠                                                   (2.11) 
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Where, 

1

1
2

1

, 0

1 ,
2

jD n

D n
D ej Oth

n

π

π

−

=⎧
⎪= ⎨ −
⎪⎩

n erwise
                                         (2.12) 

( )1 2

2

2 2
2

, 0

1
,

2

j D n jD n

D n
D e e

j Otherwise
n

α π π

π

− + −

=⎧
⎪= ⎡ ⎤⎨ −⎣ ⎦⎪
⎩

n

                               (2.13) 

Complex harmonics in (2.12) and (2.13) are plotted in Figure 2-3 and Figure 2-4 for n=-20 till 

n=20 , it can be noted that higher coefficients approach zero in magnitude , but not in a fast 

manner. 

So, substituting  (2.7) - (2.13) into (2.5) , and also entering the differentiation operator 

into the summation on the left hand side gives, 
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1 1 2
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Figure 2-3 : Magnitude of Fourier Coefficients of ( )1d t  

 

Figure 2-4 : Magnitude of Fourier Coefficients of ( )2d t  
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After some algebraic and summation sign and index manipulations, the process leads to, 
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2.5 Theoretical acquisition of  Harmonics of steady-state waveforms 
 

What is derived up to now can be reduced to a simpler form by applying  the following 

kernel (2.16) to both sides of (2.15). This particular kernel was used because it represents a dot 

product with a complex exponential function that is orthogonal to the exponential functions in 

the Fourier series only for some components on each side of (2.15), otherwise its value is zero. 

This greatly reduces the complexity of (2.15).The kernel is shown below, 

2

0

1{ ( )} ( )
s

s

kT j t
T

s

K f t f t e dt
T

π
−

= ∫
                                            (2.16) 

26 
 



and  the orthogonality property is demonstrated by, 

2 2
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1 ,1
0 ,

s

s s

n kT j t j t
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n k
e e dt

n kT

π π
− =⎧

= ⎨ ≠⎩
∫

                                       (2.17)
 

and, 

2 2 2
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n m k
e e e dt

n m kT

π π π
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                                (2.18)
 

So, after applying the aforementioned kernel equation (2.15)  reduces to, 

[ ] [ ]
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1 1 2
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k m3 2 3

1 3 3 3
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b b b b b V

m k3A X

             (2.19)

 

Since the input voltage Vg is almost constant in value and varies at a much slower rate than the 

switching frequency, the substitution  Vgn=0  for m≠0 can  be applied. So again equation (2.19) 

reduces to,  

[ ] [ ]

[ ] [ ]

1 1 2

1 2 2

2
k m k m

m s

gok k

kD D j
T

D D V

π∞

− −
=−∞

⎡ ⎤⎡ ⎤− + − + −⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤= − − + − −⎣

∑ m k3 2 3 3

1 3 3 3

A A A A X A I X

b b b b b gkV⎦                  (2.20)

 

For the purpose of simplifying the notation the following defined substitutions are introduced, 

[ ] [ ]1 1 2k m k m k mD D− − −= − + −A, 3 2 3γ A A A A                                  (2.21) 

[ ] [ ]1 2k k kD D= − + −b, 1 3 3γ b b b b2                                       (2.22) 
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kj
T
π

= −k 3Ω A I
                                              (2.23)

 

So finally (2.20) reduces to, 

k m k go gk
m

V V
∞

−
=−∞

+ = − −∑ m kA, k b, 3γ X Ω X γ b
                               (2.24)

 

Since any converter system is a physical system this means that it essentially is low pass and 

higher frequency harmonics will approach zero. This allows the reduction of the infinite series in 

(2.24) into a finite one. Assuming that it is required to acquire N harmonics then k can be swept 

in integer increments form –N till +N. Thus giving the following set of vector equations, 
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Equations (2.25) can be accumulated into one system of linear equations as shown below,  
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All that remains is to solve the system of linear equations shown in (2.26) to obtain the Fourier 

complex coefficients for each state in the DC/DC converter circuit. Those coefficients can then 

be utilized to construct the steady-state waveforms by using (2.7) .Any linear algebra computer 

package can be used for solving (2.7), but MATLAB was utilized for obtaining the results 

presented in this dissertation. The matrix on the left-hand side of (2.7) can be large depending on 

the number needed harmonics. For example if the converter has 6 state-variables (6th degree 

system) and 20 harmonics are needed  then the matrix will be  a 246 x 246, but still such a matrix 

equation will just need a fraction of a second to solve in modern computers , so this is much 

faster than iterative simulation packages like Spice. A note about accuracy though, (2.7) should 

not be solved by matrix inversion because its large size will compound round off error , rather it 

should be solved by Gaussian Elimination which gives machine accuracy and is available in 

MATLAB 

2.6 Implementation in MATLAB 
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Sample MATLAB code is presented in this section as an example of how its scripting 

language can be relatively easily implemented towards solving (2.7). Results from such an 

implementation are plotted in chapter 5. 
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function sswaveforms=SteadyStatesim(D1,D2,alpha,Ts,A1,A2,A3,b1,b2,b3,C,Vg,N,t) 
%Generates CCM steady state waveforms given 
%state‐space matrices for different modes. 
 
n=‐2.*N:1:2.*N; 
n=n+(n==0).*realmin; 
D1fc=j.*(exp(‐j.*2.*pi.*n.*D1)‐1)./2./pi./n; 
D2fc=j.*exp(‐j.*2.*pi.*n.*(D1+alpha))./2./pi./n.*(exp(‐j.*2.*pi.*n.*D2)‐1); 
 
temp1=[]; 
btemp=[]; 
for k=0:(2.*N), 
    temp2=[]; 
    for m=k:‐1:(‐2.*N+k), 
        gamma=D1fc(2.*N+1+m).*(A1‐A3)+D2fc(2.*N+1+m).*(A2‐A3); 
        if m==0, 
            omega=A3‐j.*2.*pi.*(‐N+k)./Ts.*eye(size(A3)); 
        else 
            omega=0; 
        end 
 
        temp2=[temp2 gamma+omega]; 
    end 

    temp1=[temp1 ; temp2]; 
    gamma=D1fc(N+1+k).*(b1‐b3)+D2fc(N+1+k).*(b2‐b3); 
 
    if k==N, 
        omega=b3; 
    else 
        omega=0; 
    end 
 
    btemp=[btemp;‐(gamma+omega).*Vg]; 
end 
 
AA=temp1; 
clear temp1; 
 
bb=btemp; 
clear btemp; 
fcoef=AA\bb; 
fcoef=reshape(fcoef,length(b1),2.*N+1); 
temp=0; 

n=diag(‐N:1:N); 
t=ones(2.*N+1,1)*t; 
t=n*t; 
t=exp(t.*2.*pi./Ts.*j); 
sswaveforms=fcoef*t; 

Figure 2-5 : Harmonic Analysis implementation using MATLAB 

  

31 
 



3 CHAPTER 3  
HARMONIC ANALYSIS FOR THE ACQUISITION OF TRANSIENT 

WAVEFORMS FOR PERIODOCALLY VARYING LOAD  
 

3.1 Motivation 
 

The previous Chapter of this Dissertation dealt with the case of DC/DC converters in steady 

state and with steady load, for which a Harmonic analysis technique was used to acquire steady-

State waveforms.  An important expansion of the methodology developed there would be 

generalizing it so it can be applied for the acquisition of the dynamic response of DC/DC 

converters at step load. Obtaining waveforms in the varying load case facilities investigating 

implementing algorithms that search for the optimal duty cycle sequence for specific load 

transients, as will be discussed in this chapter. After arriving at the optimal or close to optimal 

duty cycle for given switching load conditions lookup table techniques or system identification 

are two options for generating that optimal signal. 
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3.2 Acquisition of Step load response from discrete Duty Cycle Signal 
 

Reexamining the general switching equation (3.1) first presented in the previous chapter the 

question presents itself of how to go through manipulating it to deal with the case of varying 

output power load. The kind of load for the purpose of this analysis will be limited to 

periodically varying step load, since the instant step presents a worst case scenario, were the 

actual system will have a finite slew rate. Also, the need for considering the load to be 

periodically varying stems from the desire of applying the harmonic analysis technique. 

( )

( )

1( ) 1 ( )

( ) 1 ( )

d d t d t
dt

d t d t

= + −⎡ ⎤⎣ ⎦

+ + −⎡ ⎤⎣ ⎦

2

1

x A A

b 2

x

b u                                             (3.1) 

The varying load will enter the switching equation through the vector u which represents all 

inputs to the converter. Although in exposition only the load current will be made to vary in the 

theory the derived method can be used for the case of varying input voltage too. The above 

implies that the load current is modeled as an input to the converter, Figure 3-1 shows two 

different approaches of modeling the transient load as an input. 
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Figure 3-1 : Modeling the load as input alone or with parallel resistance 

 

It is possible to model the load as just an input source to simplify the dynamic equations 

but that is not recommended, because real life loads have an output impedance. Also accounting 

for a load resistance helps to stabilize the model response by absorbing some of the circulating 

energy in the output filter, and without it the model may give an oscillating response which does 

not conform to the actual behavior of a real device.  The point here is that the complexity 

introduced  by a system parameter that when is varied  makes the system Time Variant rather 

than LTI  is overcome by remodeling that parameter as an input (In this case a Current Source 

instead of a passive impedance ). The difference between the current waveforms in the response 

of the converter is slight, yet the insight gained by such a simplification of load behavior is 

immense, since time varying systems are orders of magnitude harder to analyze than Linear time 

invariant systems, due to the impossibility of finding a general set of basis for the solution space. 

 Figure 3-2 shows what waveform the source representing the output load follows. The 

Load is assumed to be a periodic function of period TL that switches between too defined current 

values I1 and I2. This introduction of periodicity in the waveform of the load allows the 
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application of harmonic analysis techniques, and is a good way to retrieve the periodical nature 

of all system signals, albeit with period TL rather than Ts as in the previous chapter. 

To keep both TL and Ts in sync by making TL=M*Ts where M is an integer simplifies the 

analysis, and is not a limitation because TL is an introduced artifact anyway, and can be assumed 

as large as computationally possible. As mentioned, all signals in the system are periodic, and 

furthermore TL must be picked to allow the states of the converter to approach steady state 

before the arrival of the next load step instant. Ultimately the response of the converter states to 

that step from steady state and their transition back to steady state is what we are trying calculate. 

Since TL is an integer multiple of Ts it is possible to decompose the duty cycle signal d(t) 

into M components. Each of which is periodic and repeats every TL, as shown in Figure 3-3, and 

which can be written as, 
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Figure 3-2 : Output Load current assumed waveform for application of Harmonic Analysis 

technique 

 

As was done in the previous chapter, this periodic duty cycle function can be expressed in 

terms of its Fourier series coefficients, as shown, 
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Where, 
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Figure 3-3 : Decomposition of duty cycle signal d(t) 
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It can be noted that if as an example we assume constant duty cycle Dss the dk(t) 

components  present in the Fourier domain share the same magnitude naturally but the difference 

lies in  the linear phase slope introduced by the constant time delay in each period TL. 

Other time signals that are expanded into their Fourier series form are the state and input 

vectors of the state space representation, 
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Equation (3.6) decomposes the state vector which is the unknown waveform we desire to solve 

for while equation (3.7), decomposes the vector representing the inputs to the converter which 

are totally determined. The coefficients Un are found through, 
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(a) 

 

(b) 

Figure 3-4 : Magnitude (a) and Phase (b) of Fourier coefficients of each dk(t) (D constant) 
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So substituting equations (3.2),(3.4),(3.6) and (3.7) into the general switching model (3.1) gives, 
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After some algebraic and summation sign manipulation we arrive at, 
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Now we can apply the kernel operator described below to (3.10), 
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Where q is a dummy integer variable that can be anything. This reduces equation (3.10) it to the 

much more manageable form below, 
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Rearranging the above equation, 
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A number of definitions can introduced, 
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Which yields, 
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Since q is equation (3.17) is a dummy integer, therefore the equation remains valid for 

any value of q, a limitless number of equations can be generated. But the purpose is to solve for 

the unknown coefficient vectors Xn, of which there is an infinite quantity. The trick here is to 

recognize that real physical signals are low pass therefore the higher frequency Fourier 

coefficients approach zero. This allows us to reduce the range in the Fourier series summation to 

a finite value N, so (3.17) becomes, 

N N

n N n N=− =−

− = +∑ ∑q nq A,q-n 2 q b,qΩ X -n nγ X b U γ U
                              (3.18) 

Since equation (3.18) has N+1 vectors, and each vector is of a length equal to the order of 

the system O.(most DC/DC converters are second order). It is apparent that there are (N+1)*O 

unknowns and therefore q must vary between –N to N to yield the necessary system of linear 

equations that much be solved to give Xn for all n . This step is exactly the same as described in 

chapter 2. After finding the Fourier coefficients the time domain signals can be obtained from 

equation (3.6). 
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3.3 Finding Optimal discrete Duty Cycle signal for certain load pulse 
 

The previous section addressed the problem of finding the response of a converter if a 

specific disturbance and duty cycle control sequence is known, this section will investigate the 

inverse problem. That is the problem of finding a duty cycle signal that reproduces a desired 

response, or produces a response that is as close as possible to the desired response.  

Reexamining equation (3.10), after applying the kernel this alternate form that introduces the 

shift in the index to the states and input rather than the duty cycle can be derived, 
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   (3.19) 

It is noticed that the term Dk,m in equation (3.19) is an exponential function of the individual duty 

cycles as shown in equation (3.5). Therefore what was obtained here is a set of nonlinear 

equations in the duty cycle ratios for any arbitrary response. The previous can be solved but 

requires a lot of processing time,and is highly inefficient to process. An alternate approach is to 

investigate the response of the converter in the time domain using the discrete equation, and 

make use of the fact that the curves of the response waveforms are almost straight lines. 

The discrete equation governing the response of any generic equation is, 
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This equation will be examined further later in this dissertation, but for the purpose of this 

chapter the Exponential transition matrices can be simplified by truncating their Taylor series 

expansion.  

 Assuming variables T1 to Tn which are the time lengths the converter is at a certain mode 

(i.e. Converter is in mode 1 at 0<t<T1, in mode 2 at T1<t<T1+T2 , in mode 3 at 

T1+T2<t<T1+T2+T3) , equation (3.20) can be rewritten as, 
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So using, 
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And, 
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Note that equation (3.22) implies that the integration range can be shifted in time by an arbitrary 

value and still not affect the value of the integration, therefore that all gives, 
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Evaluating the integral and simplifying finally gives, 
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The equation relating the state as a function of all Ti’s and the initial condition can be 

derived by induction, and is found to be, 
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While (3.27) is suitable as a starting point, it can be simplified further by the small switching 

period assumption through cancellation of time terms multiplied together to give, 
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Our interested lies with the Error function, defined as, 
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And the global error function defined as, 
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All that remains is the minimization of (3.31) using any numerical package like Matlab or 

Mathematica, noting the following constraint, 

odd even sT T+ =                                                        (3.32) 
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4 CHAPTER 4  
SMALL AND LARGE SIGNAL DISCRETE DYNAMIC ANALYSIS  

 

4.1 Motivation 
 

 The purpose of this chapter is to achieve a small-signal linear time invariant discrete 

state-space model from (2.6), which although being linear is time variant. Such a model will be 

useful for obtaining a pulse transfer function for the converter and therefore a frequency response 

that inherently includes the effects of sampling. Also a large signal discrete model will be 

derived without any approximations other than that the input voltage is almost constant 

throughout one switching cycle. The small signal model can then be alternately obtained through 

Taylor series expansion with cancellation of higher order terms. 

 

4.2 Discrete small signal State-Space Model 
 

 The methodology used here for attaining the model is to consider each mode separately 

and relate the small-signal state of the converter at the end of each mode to the state at its start. 

Then all the relations are telescoped until the state at a point is described by a function of a 

previous state exactly one switching cycle in the past and all the duty cycle impulse perturbations 

in between. This process will be elaborated more by the derivation presented in this section. A 

discrete model will be arrived at which relates ( )1ˆ 1 sn D T+ +⎡ ⎤⎣ ⎦x  to ( )1ˆ sn D T+⎡ ⎤⎣ ⎦x , the choice of  

considering the state sample at t=(n+D1)Ts is arbitrary , But for cases where an analog 

49 
 



compensator is used for closing the loop it is preferable to consider the sampling time which 

corresponds with the natural sampling of the PWM modulator. 

t
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1

1D

2D

1 21 D D− −
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snT ( )1 sn T+
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3 ( )d t

1̂Und 1̂Lnd

2
ˆ

Und 2
ˆ
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1̂Lnd− 2

ˆ
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Figure 4-1 : Approximation of Duty cycle perturbations as impulse functions 

 

 The Duty cycle perturbations shown in Figure 2-2 can be approximated as weighted 

impulse functions with weights equal to the amount of perturbation at any edge throughout the 

pulses. Equations (4.1)-(4.2) describe this approximation as a train of impulses, 
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 The variables  , , ,  represent the amount of change at each boundary 

edge as shown in 

2
ˆ

Lnd 2
ˆ

Und 1̂Lnd 1̂Und

Figure 4-1.They don’t  necessarily have equal values, actually their values 

depend on the type of PWM modulator used. So describing the change in each boundary edge 

separately like this guarantees the accommodation into the model many diverse PWM generation 

circuits or even the direct output of a digital controller. Essentially the model will be a four input 

multiple output State-Space equation.  

In (2.6) , assuming that  ˆ ˆg gnv v=  ,that is , assuming that the input voltage is almost constant in 

value through one switching cycle, which is an adequate assumption since any disturbance in the 

input voltage has a much less frequency than the switching frequency. So, considering (2.6) for 

(n+D1)Ts ≤t≤(n+D1+α)Ts , it becomes, 
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          (4.3) 

In any region in time where a dynamic system is linear and its states governed by a general 

state-space equation such as, 

                                                     (4.4) 
( ) ( )d t t

dt
= +

w Aw bu

if the state of the system is known at an initial time to then the solution of (4.4) is given as, 
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So, returning to equation (4.3) it is apparent that x[(n+D1+α)Ts] ,which is at the upper 

edge of the first piecewise linear region of the converter system, is a function of x[(n+D1)Ts]  as 

stated before. So, 
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And due to the sifting property of the impulse function, 

( ) ( ) ( )

( )

( )

( ) ( ) ( )

1

1

1

1 1

1 1

ˆ ˆ

ˆ

s

ss

s

s

n D T
n D TT

1

ˆs s g
n D T

T

n

s g s

n D T e n D T e d v

T e V n D T d

α
α λα

α

α λ
+ +

+ + −⎡ ⎤⎣ ⎦

+

⎡ ⎤
+ + = + +⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥⎣ ⎦
⎡ ⎤+ − − − +⎡ ⎤⎣ ⎦⎣ ⎦

∫ 33

3

AA
3

A
1 3 3

x x

b b A A X Un

b

          (4.7) 

Before moving to the next linear region it is worth noting that there is a certain symmetry to the 

state-space form of the model that suggests the following definitions which ease the size and 

tediousness of the notation to a large extent. These definitions are, 

sTeα= 3A
1Ψ                                                           (4.8) 

2 sD Te= 2A
2Ψ                                                       (4.9) 

52 
 



( )1 21 sD D Te α− − −= 3A
3Ψ                                              (4.10) 

1 sD Te= 1A
4Ψ                                                   (4.11) 

and, 

( ) ( ) ( ) ( )gVλ λ= − + −n n 3 n 3Δ b b A A X                                 (4.12) 

Also, 

( )

( )

( )1

1

1

s

s

s

n D T
n D T

n D T

e d
α

α λ λ
+ +

+ + −⎡ ⎤⎣ ⎦

+

= ∫ 3A
1S

                                       (4.13) 

( )

( )

( )1 2

1 2

1

s

s

s

n D D T
n D D T

n D T

e d
α

α λ

α

λ
+ + +

+ + + −⎡ ⎤⎣ ⎦

+ +

= ∫ 2A
2S

                                  (4.14) 

( )

( )

( )

1 2

1
1

s

s

s

n T
n T

n D D T

e dλ

α

λ
+

+ −⎡ ⎤⎣ ⎦

+ + +

= ∫ 3A
3S

                                    (4.15) 

( )

( )

( )1

1

1
1

1

s

s

s

n D T
n D T

n T

e dλ λ
+ +

+ + −⎡ ⎤⎣ ⎦

+

= ∫ 1A
4S

                                      (4.16) 

For the special case where the A matrices in each particular mode of operation are invertible, 

Equations (4.13)-(4.16) can be written as, 

[ ]= -1
1 1S Ψ - I A3                                                            (4.17) 

[ ] -1
2 2S = Ψ - I A2                                                             (4.18) 
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[ ] -1
3 3S = Ψ - I A3                                                            (4.19) 

[ ] -1
4 4S = Ψ - I A1                                                            (4.20) 

and finally  the following is defined, 

−

∏
n m

n:m n-k
k=0

Ψ = Ψ                                                        (4.21) 

∏
n-m

n:m n-k
k=0

S = S                                                         (4.22) 

Now, continuing the derivation using the definitions (4.8)-(4.22) and substituting them into (4.7) 

gives, 

( ) ( ) ( )1 1
ˆˆ ˆ ˆ 1 1s s gn s sn D T n D T v T n D T dα+ + = + + + +⎡ ⎤ ⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎦ ⎣1 1 3 1 1x Ψ x S b Ψ Δ Un⎤⎦             (4.23) 

For the next linear region, (n+D1+α)Ts ≤t≤(n+D1+α+D2)Ts , 

( ) ( )2 1
ˆ ˆˆ ˆg Ln s s

d v t d T t n D
dt

δ= + + − + + Tα⎡ ⎤⎣ ⎦2 2 2
x A x b Δ                            (4.24) 

so, 

( ) ( ) ( )1 2 1 1
ˆˆ ˆ 2s s gn s sn D D T n D T v T n D T dα α+ + + = + + + + + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦2 2 2 2 2x Ψ x S b Ψ Δ Lnα  

(4.25) 
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Substituting  (4.23) into (4.25) gives, 

( ) ( ) ( )
( )
( )

1 2 1

1 1

1 2

ˆ ˆ

ˆ

ˆ

ˆs s g

s s Un

s s L

n D D T n D T v

T n D T d

T n D T d

α

α

+ + + = + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

+ +⎡ ⎤⎣ ⎦

+ + +⎡ ⎤⎣ ⎦

2:1 2 1 3 2 2

2:1 1

2 2

x Ψ x Ψ S b S b

Ψ Δ

Ψ Δ

n

n

                    (4.26) 

Then in the interval (n+D1+α+D2)Ts ≤t≤(n+1)Ts, 

( ) ( )2 1
ˆ ˆˆ ˆ 2g Un s s

d v t d T t n D D
dt

δ α= + + − + + + T⎡ ⎤⎣ ⎦3 3 2
x A x b Δ                     (4.27) 

So, 

( ) ( ) ( )1 2 3 1 2
ˆˆ ˆ ˆ1 2s s gn s sn T n D D T b v T n D D T dα α+ = + + + + + + + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦3 3 3 2x Ψ x S Ψ Δ Un  

(4.28) 

Again, Substituting (4.26) into (4.28) gives, 

( ) ( ) ( )
( )
( )
( )

1

1 1

1 2

1 2 2

ˆ ˆ1
ˆ

ˆ

ˆ

ˆs s g

s s Un

s s L

s s

n T n D T v

T n D T d

T n D T d

T n D D T d

α

α

+ = + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

+ +⎡ ⎤⎣ ⎦

+ + +⎡ ⎤⎣ ⎦

+ + + +⎡ ⎤⎣ ⎦

3:1 3:2 1 3 3 2 2 3 3

3:1 1

3:2 2

3 2

x Ψ x Ψ S b Ψ S b S b

Ψ Δ

Ψ Δ

Ψ Δ

n

n

Un

             (4.29) 

Finally the final linear region is encountered, when (n+1)Ts ≤t≤(n+1+D1)Ts, 

( ) [1 1
ˆ ˆˆ ˆ ]gn s Ln

d v t T d t n
dt

δ= + + −1 1
x A x b Δ sT                                    (4.30) 
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so, 

( ) ( ) ( )1 1̂ˆ ˆ ˆ1 1 1s s gn s sn D T n T v T n T d+ + = + + + +⎡ ⎤ ⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎦ ⎣4 4 1 4 1x Ψ x S b Ψ Δ Ln⎤⎦                (4.31) 

Then substituting (4.29) into (4.31) yields: 

( ) ( ) ( )
( )
( )
( )
( )

1 1

1 1

1 2

1 2 2

1

ˆ ˆ1
ˆ

ˆ

ˆ

ˆ1

ˆs s g

s s Un

s s Ln

s s Un

s s Ln

n D T n D T v

T n D T d

T n D T d

T n D D T d

T n T d

α

α

+ + = + + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

+ +⎡ ⎤⎣ ⎦

+ + +⎡ ⎤⎣ ⎦

+ + + +⎡ ⎤⎣ ⎦

+ +⎡ ⎤⎣ ⎦

4:1 4:2 1 3 4:3 2 2 4 3 3 4 1

4:1 1

4:2 2

4:3 2

4 1

x Ψ x Ψ S b Ψ S b Ψ S b S b

Ψ Δ

Ψ Δ

Ψ Δ

Ψ Δ

n

 

(4.32) 

Equation (4.32) is the general form of the small signal discrete model in state-space form, 

and it can be tailored for the different control schemes for various topologies by adjusting the 

values of α, D1 and  D2 as necessary. For example it can even be used to model the three main 

topologies (Buck , Boost and Buckboost) or any topology that is controlled by two or less 

switches and has a freewheeling mode. Of course different topologies can share the same α, D1 

and D2 parameters depending on how their switches are operated, yet the A and b for each mode 

should be different. 
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Table 4-1 : Model parameters substitution for various topologies with different control schemes 

Buck 0α =  2 11D D= −  

Boost 0α =  2 11D D= −  

BuckBoost 0α =  2 11D D= −  

Symmetric 1 21
2

D D
α

− −
=  2 1D D=  

Asymmetric 0α =  2 11D D= −  

DCS 0α =  2 1D D=  

 

Equation (4.32) is in the form of a discrete state equation that can be implemented within a 

linear system software package. Various useful information for stability analysis and 

compensation can be obtained through the model, such as the frequency response curves, root 

locus plots or Nyquist diagrams. Moreover, having the discrete model in state space form allows 

the use of modern control methods such as pole-placement.  

It is worth noticing that (4.32) has four small duty cycle modulations as input signals. 

Normally in a completely digital closed loop system the digital compensator directly controls the 

modulations in the duty cycle ratios, or its output may be connected to an analog PWM 

generator. This PWM generator, whether analog or digital is modeled with small signal 

approximation as a linear operator as shown in (4.33), 
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[ ]

1

2

2

1

ˆ

ˆ

ˆ

ˆ

un

ln

un

ln

d

d
Mc n

d

d

⎡ ⎤
⎢ ⎥
⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                                          (4.33) 

where M=[m1  m2 m3 m4]T and c[n] is the output of the discrete compensator or the input of the 

pulse width modulator. Substituting (4.33) into (4.32) gives a more useful and complete model 

for pulse transfer function acquisition. Considering what was stated above, and selecting the 

output voltage of the converter to be the output of the model, for the case where the modulator 

input to output voltage pulse transfer function is required, the complete representation of the 

discrete model is, 

[ ] [ ] [ ]ˆ ˆ1n x n c+ = +d dx A b n                                             .(4.34) 

[ ]ˆ ˆ[ ]y n x n= dC                                                        (4.35) 

Since the interest is stability analysis it is assumed that ˆ 0gnv = , so, 

=dA Ψ4:1                                                              (4.36) 

and, 

( )
( )

( )
( )

1

1

1 2

1

T

s

s

s
s

s

n D T

n D T
T M

n D D T

n T

α

α

⎡ ⎤+⎡ ⎤⎣ ⎦⎢ ⎥
+ +⎡ ⎤⎢ ⎥⎣ ⎦

= ⎢ + + +⎡⎣ ⎦⎢ ⎥
⎢ ⎥+⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

4:1 1

4:2 2

d
4:3 2

4 1

Ψ Δ

Ψ Δ
b

Ψ Δ

Ψ Δ

⎥⎤
                                   (4.37) 
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dC  normally depends on the particular topology , and is the C matrix at or just right before the 

moment of sampling. 

Note that  represents the perturbation in the converter output voltage. Equations (4.34)- 

(4.35)  are the general state-space representation of a discrete-time system from which finally the 

desired pulse transfer function is derived in (4.38), 

ˆ[ ]y n

( )
( ) [ ] 1o

d d

v z
C zI A b

c z
−= − d                                                (4.38) 

 

4.3 Discrete Large signal State-Space Mode 
 

In the previous sections a small signal State-Space dynamic model was developed, and it 

utilized approximating the perturbations of the duty cycle functions controlling the converter 

switches as impulse functions. The main assumption ofcourse is that those perturbations are 

small in magnitude and the converter states remain close to the steady state operating point. Due 

to this approximation the large signal dynamics are lost , that is large signal response could not 

be obtained.  

 As was done in chapter 3 the basis of the Discrete model is the state space switching 

model described in equation (2.1) .But now the relation between edges of each piecewise linear 

region is derived before the application of small signal perturbation. Figure 4-2 shows those 

linear regions between switching instants, and emphasizes that the time of switching between 

one mode to the next can vary by any amount within some constraints. These constraints are, 
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( ) ( ) ( )1 2 2 2 11un ln un lnd d D d Dα α< − < + + < − − 1d  

Since the desired model will be used for large signal discrete simulation it is desirous to 

choose a sampling instant within the switching cycle that is as close as possible to the average 

magnitudes of the state variables within that period. Choosing an instant of switching as a 

beginning point will result in a model that tracks the peaks of the state waveforms so for this 

dissertation the midpoint of the first duty cycle switching is chosen to be the sampling instant. 

So, to begin the derivation process the interval (n+D1/2)Ts≤t≤(n+D1+d1u)Ts is considered 

where from (2.1) , 

d
dt

= +1 1
x A x b u                                                         (4.39) 

( )

( )
( )

[ ]

1
1

1 1

1 1

1

2 1
1 1

2

2
un s

un s

un s

s

D d T

un s s

n D d T
n D d T

s
Dn T

Dn D d T e n T

e dλ λ

⎛ ⎞+⎜ ⎟
⎝ ⎠

+ +
⎡ ⎤+ + −⎣ ⎦

⎛ ⎞+⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞+ + = +⎡ ⎤ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
⎛
⎜ ⎟

+ ⎜ ⎟
⎜ ⎟
⎝ ⎠

∫

1

1

A

A
1

x x

b u nT

⎞                     (4.40) 
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Figure 4-2 : Model Piecewise linear regions with varying switching instants 

 

Now , the next interval to consider is  (n+D1+d1u)Ts≤t≤(n+D1+α-d2l)Ts where, 

d
dt

= 3 3
x A x + b u                                                           (4.41) 

( ) ( ) ( )

( )

( )

( )

[ ]

2 1

1 2

1 2

1 1

1 2 1 1
ln un s

ln s

ln s

un s

d d T
ln s un s

n D d T
n D d T

s
n D d T

n D d T e n D d T

e d

α

α
α λ

α

λ

− −

+ + −
⎡ ⎤+ + − −⎣ ⎦

+ +

+ + − = + +⎡ ⎤ ⎡⎣ ⎦ ⎣
⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

∫

3

3

A

A
3

x x

b u nT

⎤⎦
                   (4.42) 
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Substituting (4.40) into (4.42) yields , 

( ) ( )

( ) ( )
( )

( )

( )

( )

1
1

2 1

1 1

1 12 1

1

1 2

1 2

1 1

2 1
1 2

2

2
un s

ln un s

un s

un sln un s

s

ln

ln s

un s

D d Td d T
ln s s

n D d T
n D d Td d T

Dn T

n D d
n D d T

n D d T

Dn D d T e e n T

e e

e

α

λα

α
α λ

α

λ

⎛ ⎞+⎜ ⎟− − ⎝ ⎠

+ +
⎡ ⎤+ + −− − ⎣ ⎦

⎛ ⎞+⎜ ⎟
⎝ ⎠

+ + −
⎡ ⎤+ + − −⎣ ⎦

+ +

⎡ ⎤⎛ ⎞+ + − = +⎡ ⎤ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
⎡ ⎛ ⎞
⎢ ⎜ ⎟

+ ⎢ ⎜ ⎟
⎢ ⎜ ⎟

⎝ ⎠⎣

+

∫

1
3

13

3

AA

AA
1

A

x x

b

[ ]
sT

d

sd nλ
⎤⎛ ⎞
⎥⎜ ⎟

⎜ ⎟ ⎥⎝ ⎠ ⎦
∫ 3b u T

                     (4.43) 

 

It seems that the form of the discrete difference equation will be of a cumbersome nature from a 

notational perspective. Yet the same symmetry first encountered in chapter 3 still holds , and the 

notation can be immensely simplified through making some appropriate definitions as follows, 

1
12 un s

D d T
e

⎛ ⎞+⎜
⎝=

1A

1Ψ
⎟
⎠                                                       (4.44) 

( )3 2 1ln un sd d Te α− −= A
2Ψ                                                     (4.45) 

( )2 2 2 2ln un sD d d Te + += A
3Ψ                                                    (4.46) 

( )3 1 2 2 11 un ln sD D d d Te α− − − − −= A
4Ψ                                               (4.47) 

1
12 ln s

D d T
e

⎛ ⎞+⎜ ⎟
⎝ ⎠=

1A

5Ψ                                                    (4.48) 
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also, 

( )
( )1 1

1 1

1
2

un s

un s

s

n D d T
n D d T

Dn T

e λ dλ
+ +

⎡ + + −⎣

⎛ ⎞+⎜ ⎟
⎝ ⎠

= ∫ 1A
1S ⎤⎦

d

                                              (4.49) 

( )

( )

( )1 2

1 2

1 1

ln s

ln s

un s

n D d T
n D d T

n D d T

e
α

α λ λ
+ + −

⎡ + + − −⎣

+ +

= ∫ 3A
2S ⎤⎦

d

                                          (4.50) 

( )

( )

( )1 2 2

1 2 2

1 2

un s

un s

ln s

n D D d T
n D D d T

n D d T

e
α

α λ

α

λ
+ + + +

⎡ + + + + −⎣

+ + −

= ∫ 2A
3S ⎤⎦

d

                                     (4.51) 

( )

( )

( )1

1

1 2 2

1
1

ln s

ln s

un s

n d T
n d T

n D D d T

e λ

α

λ
+ −

⎡ + − −⎣

+ + + +

= ∫ 3A
4S ⎤⎦                                          (4.52) 

( )

1

1

1

1
2 1

2

1

s

s

ln s

Dn T Dn T

n d T

e
λ

dλ

⎛ ⎞+ +⎜ ⎟ ⎡ ⎤⎛ ⎞⎝ ⎠ + + −⎢⎜ ⎟ ⎥
⎝ ⎠⎣

+ −

= ∫
1A

5S ⎦                                                (4.53) 

 The integrals in S1 till S5 can be evaluated using a numerical integration method such as 

Simpsons Rule, or the matrix exponential within each integral could be expanded into its Taylor 

Series and integrated term by term. So in that case, 

( )

1
1

1
0 1 ! 2

kk

un s
k

D d T
k

+∞

=

⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥+ ⎝ ⎠⎣ ⎦
∑ 1

1
AS                                             (4.54) 

( ) ( ) 1

2 1
0 1 !

k
k

ln un s
k

d d T
k

α
∞ +

=

⎡ ⎤= − −⎣ ⎦+∑ 3
2

AS                                           (4.55) 
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( ) ( 1

2 2 2
0 1 !

k
k

ln un s
k

D d d T
k

∞

) +

=

⎡ ⎤= + +⎣ ⎦+∑ 2
3

AS                                         (4.56) 

( ) ( 1

1 2 2 1
0

1
1 !

k
k

un ln s
k

D D d d T
k

α
∞

) +

=

⎡ ⎤= − − − − −⎣ ⎦+∑ 3
4

AS                                 (4.57) 

( )

1

1
1

0 1 ! 2

kk

ln s
k

D d T
k

+∞

=

⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥+ ⎝ ⎠⎣ ⎦
∑ 1

5
AS                                           (4.58) 

 For the case where the switching period is very small (which is almost always true for 

switching DC/DC power converters) the terms for k>0 in (4.54) to (4.58) can be eliminated. The 

most accurate path though is to use an integral numerical method since the speed of convergence 

of the presented power series depends also on the norms of the A matrices which is a parameter 

that varies with the circuit components values. Also the results (4.54) to (4.58) verify that S1 till 

S5 are not dependant on n when all the duty cycle perturbations are zero and the converter is in 

steady state, so n can be set to zero in that case. 

 So, continuing the same procedure outlined before for the region (n+D1+α-

d2l)Ts≤t≤(n+D1+α+D2+d2u)Ts and every following region until the interval where (n+1-

d1l)Ts≤t≤(n+D1/2)Ts is reached, and without repeating the same algebraic manipulation in chapter 

2 the followed result is induced, 

( ) ( )
( ) [

1 11 s s

]s

n D T n D T

nT

+ + = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
+ + + + +

5:1

5:2 1 1 5:3 2 3 5:4 3 2 5 4 3 5 1

x Ψ x

Ψ S b Ψ S b Ψ S b Ψ S b S b u        (4.59) 
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 Equation (4.59) represents the Large Signal model , it should be noted that for any fixed 

switching duty cycles the converter behaves as a discrete linear system when the states are a 

function of the system input (input voltage for example , or perhaps load current). The 

nonlinearity appears only when the effect of modulating the switching cycles is considered. It is 

apparent that all the  and   matrices are functions of the duty cycle modulations in a 

nonlinear manner. The achieved model can be easily implemented using computer linear algebra 

software such as MATLAB. 

,n n:mΨ Ψ nS

 

4.4 Discrete Small signal State-Space Model without impulse approximation 
 

 As was mentioned in section 3, all the  and   matrices are functions of the 

duty cycle modulations in a nonlinear fashion  So the first step for linearizing the Discrete model 

would be to reduce those matrices to a form that is linear with respect to the cycle modulations. 

This form comes through the small signal assumption which leads to the desired small signal 

dynamic model for any steady-state operating point. But before continuing the steady state 

operating point needs to be found , so going back to (4.21) and assuming that, 

,n n:mΨ Ψ nS

1 2 2 1 0u l u ld d d d= = = =                                                (4.60) 

and noting that the converter reaches steady-state after a certain N when for all n>N , 

[ ]1 [ ]n n+ = =x x X                                                    (4.61) 
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of course the input also should be constant otherwise a constant steady state won’t be reached , 

the constant input is denoted for all n as, 

[ ]n =u U                                                              (4.62) 

Now , substituting (4.23)  and (4.24) into (4.21) and solving gives, 

( ) ( )1−
= − + + + +5:1 5:2 5:3 5:4 51 2 3 4 51 3 2 3X I Ψ Ψ S b Ψ S b Ψ S b Ψ S b S b U1

ˆ ˆn

             (4.63) 

where any matrix that has a bar on it indicates that (4.22) is satisfied. So from this point forward 

any steady state component of a matrix is represented with the same matrix name but with a bar 

on it. On the other hand and matrix with a hat on it signifies a matrix with a small signal 

simplification. 

 For the small signal analysis a certain simplification of the binomial expansion where one 

of the variables has small values will be used. The general form of the binomial expansion is, 

( ) 1 2 2 1ˆ ˆ ˆ
1 2 1

n
n n n nn n n

a b a a b a b ab b
n

− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ = + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

iiiiii                    (4.64) 

where, 

( )
!

! !
n n
k k n k
⎛ ⎞

=⎜ ⎟ −⎝ ⎠
                                                        (4.65) 

and since  is small when compared to a all high order powers can be eliminated to give, b̂

( ) 1ˆ n
n na b a na b−+ ≈ + ˆ                                                    (4.66) 
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The line of attack will be to use the approximation in (4.28) and the Taylor series truncation 

to express the matrices in the discrete model as linear functions of the duty cycle modulations, so 

each matrix presented in (4.21) is investigated and manipulated to reach the desired result. Then, 

starting with S1 and manipulating it algebraically to get, 

( )

1
1

1
0

ˆ
1 ! 2

kk

s un s
k

D T d T
k

+∞

=

⎡ ⎤= +⎢ ⎥+ ⎣ ⎦
∑ 1

1
AS                                       (4.67) 

then by applying the binomial approximation and taking the summation sign inside , then doing 

the appropriate cancellations , 

( )

1
1 1

1
0 0

ˆˆ
1 ! 2 ! 2

k kk k

s s un
k k

D DT T
k k

+∞ ∞

= =

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠
∑ ∑1 1

1
A AS sd T                            (4.68) 

so, 

1̂
ˆ

s unT d= + 111S S Ψ                                                     (4.69) 

Repeating the same process with the other  S matrices gives, 

2
ˆˆ

1̂s ln s unT d T d= − −2 222S S Ψ Ψ                                          (4.70) 

2
ˆˆ

2
ˆ

s ln s unT d T d= + +3 333S S Ψ Ψ                                          (4.71) 

2
ˆˆ

1̂s un s lnT d T d= − −4 444S S Ψ Ψ                                           (4.72) 

1̂
ˆ

s lnT d= + 555S S Ψ                                                 (4.73) 
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Moving on to the   matrices their Taylor Series expansions can be used to arrive at their small 

signal forms, for example for , 

Ψ

1Ψ

1 11
12 2

un s s
un s

D Dd T T d Te e e
⎛ ⎞+⎜ ⎟
⎝ ⎠= =

1 1
1

A A A
1Ψ                                       (4.74) 

So, 

( 1
0 !

k
k

un s
k

d T
k

∞

=

= ∑ 1
11

AΨ Ψ )                                             (4.75) 

and if  is small all terms where k>1 can be ignored so what remains would be, 1und

1̂
ˆ

s unT d⎡ ⎤= +⎣ ⎦11 1Ψ Ψ I A                                                   (4.76) 

and in the same manner, 

22 3 2 3
ˆ ˆˆ

s ln s unT d T d1
⎡ ⎤= − −⎣ ⎦Ψ Ψ I A A                                         (4.77) 

2
ˆ ˆˆ

2s ln s unT d T d⎡ ⎤= + +⎣ ⎦33 2 2Ψ Ψ I A A                                           (4.78) 

2
ˆˆ

1̂s un s lnT d T d⎡ ⎤= − −⎣ ⎦44 3 3Ψ Ψ I A A                                            (4.79) 

1̂
ˆ

s lnT d⎡ ⎤= +⎣ ⎦55 1Ψ Ψ I A                                                  (4.80) 
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If the  matrix is examined in (4.21) after substituting the small signal forms in (4.38) 

to (4.44) into it the following algebraic manipulations can be done , 

5:1Ψ

2
ˆ ˆ ˆ ˆ ˆ ˆ=5:1 5 4 3 1Ψ Ψ Ψ Ψ Ψ Ψ                                                    (4.81) 

but, 

1 2
ˆ ˆˆ ˆ

1̂s ln s un s lnT d T d T d⎡ ⎤ ⎡= + − −⎣ ⎦ ⎣5 5 4 4 45 4 1 3 3Ψ Ψ Ψ Ψ A Ψ Ψ A Ψ A ⎤
⎦  

So, 

( ):4 5: 5:2 1
ˆ ˆˆ ˆ

s un s lnT d T d= − + −5 4 5 4 45 4 3 1 3Ψ Ψ Ψ Ψ A Ψ A Ψ Ψ A                        (4.82) 

and in a similar manner, 

( )
( )
5: 5: 5: 5:2 2

:3 5: 1

ˆ ˆˆ ˆ ˆ

ˆ
s ln s un

s ln

T d T d

T d

= + + −

+ −

3 3 3 4 35 4 3 2 2 3

5 4 4 31 3

Ψ Ψ Ψ Ψ Ψ A Ψ A Ψ A Ψ

Ψ A Ψ Ψ A Ψ
                  (4.83) 

( )
( )
( )

5:22

5:2 3 1

5: 2 5:2 3 2

5: 2 5: :2 2

:2 5: :2 1

ˆ ˆ ˆ ˆ

ˆ

ˆ

ˆ

ˆ

s un

s ln

s un

s ln

T d

T d

T d

T d

=

−

+ −

+ −

+ −

5 4 3

3 2

3 4 32 3

5 4 4 31 3

Ψ Ψ Ψ Ψ Ψ

Ψ A

Ψ A Ψ Ψ A

Ψ A Ψ Ψ A Ψ

Ψ A Ψ Ψ A Ψ

                           (4.84) 

 

 

Finally, 
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( )
( )
( )
( )

5:12

5:1 5:2 3 1

5: 2:1 5:2 3 2

5: 2:1 5: :1 2

:1 5: :1 1

ˆ ˆ ˆ ˆ ˆ

ˆ

ˆ

ˆ

ˆ

s un

s ln

s un

s ln

T d

T d

T d

T d

=

+ −

+ −

+ −

+ −

5 4 3 1

11

3 12

3 4 32 3

5 4 4 31 3

Ψ Ψ Ψ Ψ Ψ Ψ

Ψ A Ψ A Ψ

Ψ A Ψ Ψ A Ψ

Ψ A Ψ Ψ A Ψ

Ψ A Ψ Ψ A Ψ

                           (4.85) 

 

Now attention is turned to the ( )+ + + +5:2 1 1 5:3 2 3 5:4 3 2 5 4 3 5 1Ψ S b Ψ S b Ψ S b Ψ S b S b  matrix in 

(4.59) , which can be attacked component by component , but first to simplify the analysis the 

matrix is rearranged as, 

( )( )( )( )5 4 3 + + + +2 1 1 2 3 3 2 4 3 5 1Ψ Ψ Ψ Ψ S b S b S b S b S b  

So starting with , 

( ) ( )3 2 3 1 1 2 1
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ

s ln s un s un s ln s unT d T d T d T d T d⎡ ⎤+ ≈ − − + + − −⎣ ⎦2 2 2 1 2 21 22 1 1 2 3 1 3Ψ S b S b Ψ Ψ A Ψ A S Ψ b S Ψ Ψ b  

gives, 

( )
( )

3

3 2

ˆ ˆ ˆ

ˆ

ˆ
1s un

s ln

T d

T d

+ ≈ +

+ − −

+ − −

2 1 22 1 1 2 3 1 3

2:1 2 211 1 3

2 21 1 3

Ψ S b S b Ψ S b S b

Ψ b Ψ A S b Ψ b

Ψ A S b Ψ b

                            (4.86) 

 

and by continuing along this path , 
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( )
( )
( )
( )

:23

3 3: 3:3 1

3: 3:3 2

2

ˆ ˆ ˆ ˆ ˆ

ˆ

ˆ

ˆ

s un

s ln

s un

T d

T d

T d

+ + = + +

+ − −

+ − − + + +

+ + +

3 31 2 32 1 1 2 3 3 2 1 3 2

:1 2 211 1 3

2 2 3 2 3 31 1 21 3 2 1 2 3 2

3 2 3 31 22 1 2 3 2

Ψ Ψ S b S b S b Ψ S b Ψ S b S b

Ψ b Ψ A S b Ψ b

Ψ A S b Ψ b Ψ A Ψ S b Ψ A S b Ψ b

Ψ A Ψ S b Ψ A S b Ψ b

        (4.87) 

and , 

( )( )

( )

4 3

4:2 4:

4 4: 4:3 1

4: 4: 4:3
2

4: 4:

4: 4: 4:

:2

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ

ˆ

s un

s ln

T d

T d

+ + =

+ +

+ − −

⎛ ⎞− − +
+ ⎜ ⎟⎜ ⎟+ +⎝ ⎠

+ +

+ − −

2 1 1 2 3 3 2

3 41 2 31 3 2

:1 2 211 1 3

2 2 3 21 11 3 2 1

3 322 3 2

3 2 3 31 22 1 2 3 2

4 3 4 313 1 3

Ψ Ψ Ψ S b S b S b

Ψ S b Ψ S b Ψ S b

Ψ b Ψ A S b Ψ b

Ψ A S b Ψ b Ψ A Ψ S b

Ψ A S b Ψ b

Ψ A Ψ S b Ψ A S b Ψ b

Ψ A Ψ S b Ψ A Ψ S 2
ˆ

s unT d

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

2 3

4 33 2

b

Ψ A S b

                    (4.88) 
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So finally, 

( )( )( )

( )

5 4 3

5:2 5: 5:

5 5: 5:3 1

5: 5: 5:3
2

5: 5:

5: 5:

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ

ˆ

s un

s ln

T d

T d

+ + + + =

+ + + +

+ − −

⎛ ⎞− − +
+ ⎜ ⎟⎜ ⎟+ +⎝ ⎠

+

+

2 1 1 2 3 3 2 4 3 5 1

3 4 51 2 3 4 51 3 2 3 1

:1 2 211 1 3

2 2 3 21 11 3 2 1

3 322 3 2

3 2 31 22 1 2

Ψ Ψ Ψ Ψ S b S b S b S b S b

Ψ S b Ψ S b Ψ S b Ψ S b S b

Ψ b Ψ A S b Ψ b

Ψ A S b Ψ b Ψ A Ψ S b

Ψ A S b Ψ b

Ψ A Ψ S b Ψ A S b

5: 5: :2 5: 2

5: 5:

4:2 4:

4

1
5: :2 5:

5: 5:

ˆ

ˆ

s un

s ln

T d

T d

⎛ ⎞
⎜ ⎟
+ − −⎜ ⎟
⎜ ⎟⎜ ⎟− −⎝ ⎠
⎛ ⎞+
⎜ ⎟
+ + +⎜ ⎟

+ ⎜ ⎟
− −⎜ ⎟
⎜ ⎟− −⎝ ⎠

3

3 4 3 4 31 22 3 1 3 3

4 433 2 3

5 5 31 21 1 1 3

5 4 5 53 41 2 1 3 1

4 3 4 31 23 1 3 3

4 433 2 3

Ψ b Ψ A Ψ S b Ψ A Ψ S b

Ψ A S b Ψ b

Ψ A Ψ S b Ψ A Ψ S b

Ψ A Ψ S b Ψ A S b Ψ b

Ψ A Ψ S b Ψ A Ψ S b

Ψ A S b Ψ b

                    (4.89) 

 After finding the small signal forms for the two matrices in (4.59) its time now to apply 

small signal perturbation to that equation and cancel out small signal products, so, 

[ ] [ ]( )
( ) [ ]( )

ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

n n

n

+ = +

+ + + + + +

5:1

5:2 1 1 5:3 2 3 5:4 3 2 5 4 3 5 1

X x Ψ X x

Ψ S b Ψ S b Ψ S b Ψ S b S b U u
             (4.90) 

notice that [ ] [ ]1n n+ = =X X X  is constant at steady state and the same can be said about the 

large signal component of the input to the model , substituting (4.39) and (4.43) into (4.44) and 

doing all the cancellations and removing all constant components gives the final form of the 

small signal discrete model, 
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[ ] [ ]
( ) [ ]

( )

( )

5:1

5:2 5: 5:

5 5: 3
5:1 5:2 3 1

5:

5: 5:3

5: 2:1 5:2 5:3

5: 5:

ˆ ˆ1

ˆ

ˆ
s un

n n

n

T d

+ =

+ + + + +

⎡ ⎤⎛ ⎞−
+ − +⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞− −
⎜

+ − + +⎜
⎜⎜+ +⎝ ⎠

3 4 51 2 3 4 51 3 2 3 1

:1 2 11 1
11

2 3

2 21 1 3

3 1 3 2 12 2 1

3 322 3 2

x Ψ x

Ψ S b Ψ S b Ψ S b Ψ S b S b u

Ψ b Ψ A S b
Ψ A Ψ A Ψ X U

Ψ b

Ψ A S b Ψ b

Ψ A Ψ Ψ A Ψ X Ψ A Ψ S b

Ψ A S b Ψ b

( )

( )

2

5: 5:

5: 5: :2
5: 2:1 5: :1 2

5:

5: 5:

4:2

:1 5: :1

ˆ

ˆ

s ln

s un

T d

T d

⎡ ⎤
⎢ ⎥⎟
⎢ ⎥⎟
⎢ ⎥⎟⎟⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞+
⎢ ⎥⎜ ⎟

+ −⎢ ⎥⎜ ⎟
+ − +⎢ ⎥⎜ ⎟

−⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟− −⎝ ⎠⎣ ⎦

+

+ − +

3 2 31 22 1 2 3

3 4 3 12 3 1
3 4 32 3

4 3 23 3

4 433 2 3

5 511 1 1

5 4 4 31 3

U

Ψ A Ψ S b Ψ A S b

Ψ b Ψ A Ψ S b
Ψ A Ψ Ψ A Ψ X U

Ψ A Ψ S b

Ψ A S b Ψ b

Ψ A Ψ S b Ψ A Ψ

Ψ A Ψ Ψ A Ψ X

4:

5: :2 1

5:

5: 5:

ˆ
s lnT d

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

+ +⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

+ −⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟−⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟− −⎝ ⎠⎣ ⎦

3 2 3

5 4 53 41 2 1 3

5 4 3 11 3 1

4 3 23 3

4 433 2 3

S b

Ψ A Ψ S b Ψ A S b

Ψ b Ψ A Ψ S b U

Ψ A Ψ S b

Ψ A S b Ψ b

 

(4.91) 

 Although the small signal model here looks more complex than the one developed in the 

previous sections, there is a certain symmetry to it that can be exploited when implementing it in 

a simulation or linear algebra package. With the arrival at the small signal discrete model with no 

impulse function approximation this chapter is concluded. 
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5 CHAPTER 5  
APPLICATION OF DISCRETE MODELING METHOD TO THE 

HALF-BRIDGE DC/DC TOPOLOGY WITH CURRENT DOUBLER 
 

5.1 Overview of Half-Bridge topology with three main control method 
 

Established control techniques for the Half-Bridge DC/DC power converter are the 

symmetric and asymmetric (complimentary). While asymmetric control achieves ZVS conditions 

for converter switches its disadvantages are unbalanced component stresses and the existence of 

a nonzero DC magnetizing current in the isolation transformer, which increases the risk of 

transformer saturation and generally has a detrimental effect on the dynamics of the converter. A 

new control method called DCS PWM (Duty-Cycle Shifted) was proposed in (7) to achieve ZVS 

for at least one of the Half-Bridge switches, this control method is derived from symmetric 

control and entails switching S2 almost instantly after S1 turns off (see figure 5-1a). Of course 

meeting ZVS conditions is desirable because it allows the converter to operate at higher 

switching frequencies with greater efficiencies. Thus arises the need to accurately close the loop 

on this topology to meet design specifications, but as was stated in the introduction to this 

dissertation conventional averaging methods for dynamic modeling yield models that are 

inaccurate at the upper frequency range because they ignore the sampled nature of the Duty 

Cycle signals that drive the power stage. Furthermore they predict frequency response content at 

higher than half the switching frequency. 
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5.2 State-Space representation of Modes of the Half-Bridge DC/DC topology with 
current doubler 

 

Figure 5-1 shows the typical Half-Bridge topology and its three main modes of operation 

, Mode III being the freewheeling mode. All parasitics for the output filter and half-bridge 

capacitors are included. The system can be represented in piecewise state-space form as shown 

in the chapter 2 of this thesis and the parameters of the discrete model for the different control 

schemes are shown in Table 5-1, which shows the appropriate substitution of  the parameters in 

equation (3.32)  

 

Table 5-1 : Model parameter substitution for each control scheme 

Symmetric 1 21
2

D D
α

− −
=  2 1D D=  

Asymmetric 0α =  2 11D D= −  

DCS 0α =  2 1D D=  

 

 So the first step now for applying the small signal model in chapter 3 is to find the A and 

b matrices for all the modes of operations , not forgetting of course to define the states. This is 

done in (5.1) till (5.7) shown below,  

1 2 1 2
ˆ ˆ ˆˆ ˆ ˆ ˆT

c c Lm L L cov v i i i v⎡= ⎣x ⎤⎦                                             (5.1) 
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(c) 
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(d) 

Figure 5-1 : (a) Isolated Half-Bridge Converter, (b) Mode I (S1 on, S2 off ), (b) Mode II (S1 off, 

S2 on),  (c) Mode III (S1 off, S2 off) 

 

( )1

1 1 0 0
2 2 2 2

T

c c m k

N N
Cr Cr L L L

⎡ ⎤
= ⎢ ⎥

+⎢ ⎥⎣ ⎦
1b                                    (5.2) 

( )2
2

1 1 0
2 2 2 2

T

c c m k

N N
Cr Cr L L L

⎡ ⎤− −
= ⎢ ⎥

+⎢ ⎥⎣ ⎦
b 0                                     (5.3) 

3
1 1 0 0 0 0

2 2
T

c cCr Cr
⎡

= ⎢
⎣ ⎦

b
⎤
⎥                                                  (5.4) 
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and, 

( ) ( ) ( ) ( )
( ) ( )

( )

1 1

1
1 4

1 4

1 1 1 1 1

2 44

2 2

1 1 0 0
2 2 2 2

1 1 0 0
2 2 2 2

0 0
2 2

2
2 2 2

0 0 0

10 0 0

c c

c c

m m m m

L
esr L

k k k k k esr k

esr LL

esr

esr L esr L

esr o esr o o esr

N N
Cr Cr C C

N N
Cr Cr C C
N N
L L L L

r r RN N
L L L L L L L L L L r L L

r Rr
L L r L

r R r R
r C r C C r

α α

αβ
α β

ββ

− − − −

− −

− −−

⎛ ⎞= − + +⎜ ⎟−− ⎝ ⎠
+ + + + + +

−− +

− −
+

1A

( )

1

2

LR

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

          (5.5) 

( )

( ) ( ) ( )
( )
( )

( )

2 1

1 3 3

1 1

2
2 3

32

2 2 2 2 2

1 1 0 0
2 2 2 2

1 1 0 0
2 2 2 2

0 0
2 2

0 0 0

2
2 2 2

10 0 0

c c

c c

m m m m

esr LL

esr

L
esr L

k k k k k esr k

esr L esr L

esr o esr o o esr

N N
Cr Cr C C

N N
Cr Cr C C
N N
L L L L

r Rr
L L r L

r r RN N
L L L L L L L L L L r L L

r R r R
r C r C C r

α α

β β

αβ
βα

− − − −

− −

− −−

− +=

⎛ ⎞− + +⎜ ⎟ −−− ⎝ ⎠
+ + + + + +

− −
+

2A

( )

1

2

LR

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

             (5.6) 
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( )

( )

( ) ( )

( )
( )

3 4 3 4

1 33

1 1 1 1

2 44

2 2 2 2

1 1 0 0 0 0
2 2

1 1 0 0 0 0
2 2

0 0 0

0 0

0 0

10 0 0

c c

c c

s s s s

m k m k m k

esr L esr LLs

esr

esr Lesr L Ls

esr

esr L esr L

esr o esr o o esr L

Cr Cr

Cr Cr
r r r r

L L L L L L
r R r Rrr

L L L r L

r Rr R rr
L L L r L

r R r R
r C r C C r R

β

β

− −⎡
⎢
⎢
⎢ − −
⎢
⎢
⎢ − + − −
⎢

+ + +⎢
⎢= − +−⎢
⎢
⎢

−− +⎢ −
⎢
⎢

− −
+⎣

3A

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

                        (5.7) 

where, 

2 (2 )n snN r rα c= +                                                       (5.8) 

( )n sn esr Lr r Rβ = +                                                      (5.9) 

All constants in the previous definitions are referenced in figure 5-1 

 

5.3 Application of Chapter  3 small-signal model to the Half-Bridge DC/DC topology 
with current doubler 

 

To demonstrate the model developed in this thesis in chapter 3, parameters will be taken 

from a prototype Half-Bridge converter with current doubler that was built in the lab. It had the 

following components and parameters, 
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Vin=48 v  ,  Vo=1 v  ,  Io=20 A  ,  Fs=400 KHz 

L1=L2= 180nH  ,  Co=500μF  ,  resr=0.66mΩ  ,  Lm=36 μH  

rL1= rL2=5e-3  ,  Lk=3.125nH  ,  N=1/6  ,  rc=10mΩ 

rs1=25 mΩ  ,  rs2=25 mΩ  ,  rs3=3 mΩ  ,  rs4=3 mΩ; 

 The first step in applying the model is getting the steady-state waveforms, which can be 

done using MATLAB as shown in the sample code in section (2.7) . Figures (5-2) till (5-4) 

shows the results from running this code. The results of the harmonic analysis are verified for the 

asymmetric case by the simplorer simulation shown in Figure 5-5. After finding the waveforms 

they are utilized in evaluating the ( )1 sn D T+⎡ ⎤⎣ ⎦1Δ  , ( 1 ) sn D Tα+ +⎡ ⎤⎣ ⎦2Δ  , 

( )1 2 sn D D Tα+ + +⎡ ⎤⎣ ⎦2Δ  and  ( )1 sn T+⎡⎣1Δ ⎤⎦   matrices (or vectors depending on the number of 

inputs) in (2.32). Figure 5-7 gives an example of how MATLAB can programmed with the 

discrete model. The resulting frequency response of the model is shown in figure 5-6. Figure 5-8 

compare the frequency response obtained from the discrete model with the one obtained from the 

classical average model. 
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Figure 5-2 : HB DC/DC steady-state waveforms for symmetric control 
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Figure 5-3 : HB DC/DC steady-state waveforms for asymmetric control 
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Figure 5-4 : HB DC/DC steady-state waveforms for DCS control 
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Figure 5-5 : Simplorer Simulation of the Asymmetric Control case 
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%Converter parameters and component values 

a=1./64;        Vg=48;           Vo=1;     Io=20;          Fs=400e3;        Ts=1./Fs;    L1=180e‐9;      L2=180e‐9;       rL1=5e‐3; 
rL2=5e‐3;       Co=500e‐6;       resr=0.66e‐3;   Lm=36e‐6*a;     Lk=200e‐9*a;     N=1/6;  RL=Vo/Io;       resrpRL=RL.*resr./(RL+resr); 
rc=10e‐3;       C=5e‐6;          rs1=25e‐3;     rs2=25e‐3;      rs3=3e‐3;        rs4=3e‐3; 

A1=[‐1./(2.*C.*rc)  ‐1./(2.*C.*rc)  ‐N./(2.*C)  ‐N./(2.*C)   0   0 ];  A1=[A1 ; ‐1./(2.*C.*rc)  ‐1./(2.*C.*rc)  N./(2.*C)  N./(2.*C)   0   0 ]; 
A1=[A1 ; N./(2.*Lm) ‐N./(2.*Lm)  ‐(N.^2).*(2.*rs1+rc)./2./Lm   ‐(N.^2).*(2.*rs1+rc)./2./Lm   0   0]; 
A1=[A1 ; N./2./(Lk+L1)  ‐N./2./(Lk+L1) ‐(N.^2).*(2.*rs1+rc)./2./(Lk+L1) ‐ ( rL1 + rs4 + resrpRL + (N.^2) .* (2.*rs1+rc) 
./2) ./ (Lk + L1) (rs4+resrpRL)./(Lk+L1)  resrpRL./resr./(Lk+L1)]; 
A1=[A1 ; 0 0 0  (rs4+resrpRL)./L2 ‐(rL2+rs4+resrpRL)./L2  ‐resrpRL./resr./L2 ];  A1=[A1 ; 0 0 0 ‐resrpRL./resr./Co  
resrpRL./resr./Co   ‐1./Co./(resr+RL)]; 

b1=[1./(2.*C.*rc) ; 1./(2.*C.*rc) ; N./(2.*Lm)  ; N./2./(Lk+L1) ; 0 ; 0]; 

A2=[‐1./(2.*C.*rc)  ‐1./(2.*C.*rc)..‐N./(2.*C) 0  ‐N./(2.*C)  0 ];  A2=[A2; ‐1./(2.*C.*rc)  ‐1./(2.*C.*rc) N./(2.*C)   0  
N./(2.*C)    0 ]; 
A2=[A2 ; N./(2.*Lm) ‐N./(2.*Lm) ‐(N.^2).*(2.*rs2+rc)./2./Lm   0 ‐(N.^2).*(2.*rs2+rc)./2./Lm   0 ]; 
A2=[A2; 0 0 0  ‐(rL1+rs3+resrpRL)./L1   (rs3+resrpRL)./L1     resrpRL./resr./L1 ]; 
A2=[A2;  N./2./(Lk+L2)  ‐N./2./(Lk+L2)  ‐(N.^2).*(2.*rs2+rc)./2./(Lk+L2)   (rs3+resrpRL)./(Lk+L2)   ‐(rL2 + rs3 + resrpRL 
+ (N.^2 ).*(2.*rs2+rc)./2)./(Lk+L2)   ‐resrpRL./resr./(Lk+L2)]; 
A2=[A2;  0 0 0 ‐resrpRL./resr./Co    resrpRL./resr./Co   ‐1./Co./(resr+RL)]; 

b2=[1./(2.*C.*rc) ; 1./(2.*C.*rc) ; .‐N./(2.*Lm)  ; 0 ;  ‐N./2./(Lk+L2)  ; 0]; 

A3=[‐1./(2.*C.*rc)  ‐1./(2.*C.*rc) 0 0 0 0];  A3=[A3 ; ‐1./(2.*C.*rc)  ‐1./(2.*C.*rc) 0 0 0 0 ]; 
A3=[A3 ; 0 0 ‐(rs3+rs4)./(Lm+Lk)   ‐rs3./(Lm+Lk) ‐rs4./(Lm+Lk) 0]; 
A3=[A3; 0 0 ‐rs3./L1 ‐(rL1+rs3+resrpRL)./L1    resrpRL./L1 resrpRL./resr./L1]; 
A3=[A3; 0 0 ‐rs4./L2  resrpRL./L2    ‐(rL2+rs4+resrpRL)./L2   ‐resrpRL./resr./L2]; 
A3=[A3;  0 0 0 ‐resrpRL./resr./Co    resrpRL./resr./Co   ‐1./Co./(resr+RL)]; 

b3=[1./(2.*C.*rc) ; 1./(2.*C.*rc)  ;  0  ; 0 ; 0  ; 0]; 

%Sym 
D1=2.*Vo./N./Vg;   al=0; D2=D1; 
t=D1.*Ts; 

[x1,sscoef]=SteadyStatesim(D1,D2,al,Ts,A1,A2,A3,b1,b2,b3,1,Vg,20,t);  t=(D1+al).*Ts; 
[x2,sscoef]=SteadyStatesim(D1,D2,al,Ts,A1,A2,A3,b1,b2,b3,1,Vg,20,t);  t=(D1+al+D2).*Ts; 
[x3,sscoef]=SteadyStatesim(D1,D2,al,Ts,A1,A2,A3,b1,b2,b3,1,Vg,20,t);  t=Ts; 
[x4,sscoef]=SteadyStatesim(D1,D2,al,Ts,A1,A2,A3,b1,b2,b3,1,Vg,20,t); 
x1=real(x1); x2=real(x2);  x3=real(x3); x4=real(x4); 
delta1=(b1‐b3)*Vg‐(A1‐A3)*x1; delta2=(b2‐b3)*Vg‐(A2‐A3)*x2; 
delta3=(b2‐b3)*Vg‐(A2‐A3)*x3; delta4=(b1‐b3)*Vg‐(A1‐A3)*x4; 
lambda1=expm(al.*A3.*Ts); lambda2=expm(D2.*A2.*Ts); 
lambda3=expm((1‐D1‐D2‐al).*A3.*Ts); lambda4=expm(D1.*A1.*Ts); 
lambda41=lambda4*lambda3*lambda2*lambda1; 
lambda42=lambda4*lambda3*lambda2; 
lambda43=lambda4*lambda3;  Ad=lambda41; 
bd=Ts.*[lambda41*delta1 lambda42*delta2 lambda43*delta3   lambda4*delta4]*[0.5 ; 0 ; 0 ; 0.5];  dd=0; 
HBf=ss(Ad,bd,cd,dd,Ts); 

Figure 5-7 : Matlab Script to implement Discrete Model 
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Figure 5-8 :Comparison between the Average Model and the Discrete Model for DCS control 
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5.4 Application of Chapter 4 Large-signal model to the Half-Bridge DC/DC topology 
with current doubler 

 

 The Large signal model represented by equation (4.21) is applied to the Half Bridge 

topology with parameters introduced in section 3. If a pulsating input is applied to it (for 

demonstration purposes) then the output of the model for DCS and Symmetric control is as 

shown in figure (5-8), while  figure (5-9) is for Asymmetric control. 
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Figure 5-9 : Application of Large Signal model to HB DC/DC topology  for Symmetric and DCS 

control respectively 
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Discrete Time response with pulsating input
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Figure 5-10 : Application of Large Signal model to HB DC/DC topology for Asymmetric control 

 

 It is apparent that Asymmetric control is the least stable control method for the Half-

Bridge Topology as seen in figure (5-9) and as can be deduced from the smaller gain and phase 

margins in figure (5-6) 
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5.5 Comparison with an experimental prototype 
 

 An experimental lab prototype  of a DCS controlled half-bridge Topology was used to 

compare with the derived models in chapter 3 and chapter 4. That pulse transfer function of the 

Discrete model of the converter in this case turns out to be, 

( )
( )

2

3 2

ˆ 0.1542z -0.05593z-0.08207
z -2.633z +2.416z-0.7744

ov z
c z

=                                     (5.10) 

The frequency response is simply obtained by substituting  z=ejwTs. And from that frequency 

response (the one shown in figure 5-6 for DCS) one can design an appropriate compensator to 

improve the dynamics of the converter and maintain stability in closed loop. This compensator is 

found to be, 

( )
( )

3 2

3 2

2.065z -0.9179z -1.97z+1.013     
ˆ z -0.1969z -0.6427z-0.1604  o

c z
v z

=                           (5.11) 

The built laboratory prototype with the compensator in (6.11) had its closed loop frequency 

response (power stage with compensator) examined with a frequency analyzer for verification 

purposes. The results of the comparison between the experimental and theoretical frequency 

responses are plotted in Figure 6-10 and show a very high correspondence from 1 KHz till Fs/2. 
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Figure 5-11 : Comparison of Closed loop frequency response between experiment and theory 
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It is worth noting that the Discrete model which was presented in state-space form is more 

adequate for direct design in the case where a digital controller is implemented, and it surpasses 

the continuous average models in accuracy at the higher frequency range. This last property is 

crucial for converters operating at high switching frequencies where modeling errors affect the 

robustness of the closed loop. Additionally the main reason discrete models are a more natural 

choice for switching converters is due to the fact that they are driven by discrete duty ratio 

modulations, so the sample and hold effect are implicitly included. As seen on the plots in (5-6) 

the measured phase at the higher frequencies has a large deviation from analog model 

predictions, which means if such a system was to be compensated depending on the continuous 

model, there would have been a high risk of instability, or at best lower transient performance 

than expected. 
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6 CHAPTER 6  
IMPLEMENTATION OF DISCRETE MODEL IN A GUI FOR 

CONTROLLER DESIGN USING MATLAB 
 

6.1 Overview of GUI platform 
 

 The purpose of this chapter is to review a GUI platform developed in MATLAB to aid 

controller design. Essentially this platform is a GUI wrapper for the discrete models developed in 

this thesis. Figures 6-1 till 6-6 show the main windows of the platform. 

Starting  with the main window shown in Figure 6-1 , the various numbered components are, 

1. The topology popup list : many topologies with different control schemes are available 

here. 

2. View Parameters Button : opens the window shown in Figure 6-2 were the converter 

circuit parameter can be entered. 

3. Compensator Frame : this frame contains sliders and edit boxes that are used to specify 

the dynamics of the compensator used in terms of its poles or zero. A compensator with 

up to twelve poles and zeros with an integrator can be entered. Also ,the switching 

frequency and the compensator DC gain can be entered here. 

4. Magnitude of Frequency Response. 

5. Phase of Frequency Response. 

6. Bode Plot Frame: contains checkboxes  than when chosen causes the platform to plot the 

open loop , plant , compensator or closed loop frequency responses. More than one 

frequency response can be plotted at the same time. 
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7. Difference Equation Coefficients Button : this button gives the coefficients of the digital 

compensator equivalent to the compensator specified in the compensator frame (number 

3)  

8. Transfer Functions Button: this button gives the various continuous and discrete transfer 

functions of the compensator at hand. 

 

Other functions can be accessed through the main window menu. For example there are 

menu items for saving and loading parameters and compensator data. Also the tools menu 

provides access to the time response window shown in Figure 6-3 , this window gives the closed 

loop response under step load conditions were the slew rate of the load step can be specified. 

Another tools menu item is the parameter sweep that opens the window of Figure 6-4, in this 

window any parameter of the circuit can be swept across a defined range to observe the 

parameters effect on the frequency response. The root locus item produces the root locus of the 

closed loop of the system, and finally, the Steady-State ripple item calculates the steady-state 

waveforms utilizing the analysis described in chapter 2. 
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Figure 6-1 : Digital Controller Designer main window 
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Figure 6-2 : Digital Controller Designer parameters window 
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Figure 6-3 : Digital Controller Designer Time response window 
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Figure 6-4 : Digital Controller Designer parameter sweep window 
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Figure 6-5 : Digital Controller Designer Root Locus window 
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Figure 6-6 : Digital Controller Designer Steady-State waveforms window 
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6.2 Design Example 
 

 As an example of utilizing this GUI platform parameters from a lab prototype were 

entered into the parameters window  those parameters are as shown below, 

 

 

Figure 6-7 : Parameters for Lab Prototype Half-Bridge with current doubler and Symmetric 

control 

 

 The next step in the controller design process is to check two poles and two zeros with 

DC gain and an integrator in the compensator frame of the main window. This specific 

compensator is the general PID that is most generally used in many cases for compensator 

realization. The sliders of the poles and zeros are then adjusted until the desired bandwidth and 

phase margins are achieved, as shown in Figure 6-8. The achieved compensator parameters can 

then be used to design an analog realization as shown in Figure 6-9 , or they can be used to 

obtain the parameters of a linear discrete compensator (a difference equation ) through the use of 

the Difference Coefficients Button in the main window as shown in Figure 6-10.  
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 With this design example this chapter is concluded. 

 

Phase Margin= 50.36 deg  

fp1=-91510.97 Hz 

fp2=-191692  Hz 

fz1=-9713.505 Hz 

fz2=-17988.09 Hz 

K=10000    

BW=31 Khz 

 

Figure 6-8 : Desired Bandwidth and phase margin  with required compensator poles and zeros 
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Figure 6-9 : Compensator realization in the analog domain 

 

 

Figure 6-10 : Difference Equation coefficients for Digital Controller realization 
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7 CHAPTER 7  
JAVA BASED SYMBOLIC CIRCUIT SOLVER (SYMCIRC) 

 

7.1 Motivation 
 

 The goal of the work presented here is to develop a versatile symbolic based linear circuit 

with switches solver. The solver works by accepting a Netlist, and the element one wants to find 

the voltage across or current on, as input parameters. Then it either produces the plot or the time 

domain expression of the output. Frequency domain plots or Symbolic Transfer Functions are 

also produced. The solver gets its input from a Web-based GUI circuit drawer developed at 

UCF[]. Since an early design criteria was to allow mobility of access to the developed tools it 

was decided to write all components in the Java programming language due to its extensive 

support of web applications.   

 Typical simulation tools Electrical Engineers encounter are numerical in nature, that is 

when presented with an input circuit they iteratively solve it across a set of small time steps. The 

result is represented as a data set of output versus time, which can be plotted for further 

inspection. Such results don’t help one understand the ultimate nature of circuits as Linear Time  

Invariant systems with a finite dimensional basis in the solution space.PSpice is one example of 

such an approach and is the most widely used.  

The SymCirc Symbolic Solver provides all simulation results as Time domain 

expressions composed of the basis functions that exclusively include exponentials, sines, cosines 

and/or t raised to any power.  
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 One big motivation for going the symbolic simulation route , other than the gained 

insight , is the fact that for circuits with switching components convergence problems are 

avoided, since elements are represented as symbols rather than numbers .  Also subsequent 

simulation of the same circuit with different parameter values is much faster , due to the fact that 

the system of equations representing the circuits need not be solved more than once. 

 

7.2 Review of Spice 
 

 SPICE is one of the ubiquitous numerical simulation packages for electronic circuits. It 

stands for  “Simulation Program with Integrated Circuit Emphasis” and was developed by Larry 

Nagel and Donald Pederson at Berkeley. Its’ predecessor was called CANCER : “Computer 

Analysis of Nonlinear Circuits Excluding Radiation”, since it was the first simulator developed 

for civilian application that don’t need radiation hardness verification. The first incarnation of the 

program was SPICE1 which was coded in Fortran and used regular nodal analysis and fixed 

time-step transient analysis. Later the improved SPICE2 was introduced which used modified 

nodal analysis and variable time-step transient analysis, allowing more sample points where the 

waveforms rapidly change. Finally SPICE3 was written based on the Fortran code in C by 

Thomas Quarles, who also added X window plotting. 

 The Berkley code is the base of all subsequent implementations of SPICE (like PSPICE , 

HSPICE, ISPICE , XSPICE ,etc.). Most electronic manufacturers built in house simulation 

products based on that code. On popular product is the implementation provided by ORCAD 

with assorted tools. 

105 
 



  The main theoretical backbone of SPICE is the utilization of the Guass-Siedel method for 

solving the system of equations arising from multiple node circuits. If nonlinear elements exist a 

modified Newton-Raphson algorithm is used . Dynamic circuits are solved by time-stepping 

while considering capacitors and inductors as constant voltage and current sources respectively 

at each time point. For example the capacitor voltage can be stepped as follows, 

1
n

n
i tv
C+ nvΔ

= +                                                            (7.1) 

While the inductor current in stepped using, 

1
n

n
vi t
L+ ni= Δ +                                                              (7.2) 

 The resulting simulation data points can then be plotted for further investigation. SPICE 

is a very powerful tool for nonlinear circuits , but suffers from poor performance for circuits with 

rapidly switching elements, such as SMPS converters. Such poor performance manifests as slow 

simulation speed around switching points and convergence problems that more often than not 

derail the completion of the simulation. So it is worth investigation Symbolic simulation for the 

subtype of circuits that exhibit piecewise linearity with switching. 
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7.3 Transfer Function Based Symbolic Simulation 
 

 Considering any circuit as being a system with multiple inputs and outputs, and input 

being  any dependent source and an output being the voltage or current of any circuit element , it 

is possible to obtain transfer functions generally partially  using a methodology outlined in (8). 

The stepping stone to symbolic simulation are the set of transfer functions between all inputs and 

nodes of interest. A way to begin is to first obtain what is called the “Indefinite Admittance 

Matrix” , which is like a regular admittance matrix but with the ground  assumed to be outside 

the circuit , and each node is considered a port. The Indefinite admittance matrix is constructed 

by populating every row i and column j with admittance terms yij as follows, 

,
,

Sumof admittances connected to node i if i j
yij Negative sumof admittancesbetween i and j if i j

=⎧
= ⎨ ≠⎩

                                 (7.3) 

That takes care of all passive elements. Active elements represented by dependent sources are 

populated into the matrix through different disparaging methods. For the sake of elegance and 

ease of code implementation a unified approach was developed which populates all dependent 

sources by transforming them to Voltage dependent current sources. Those are populated as 

shown in figure 7-1.   The transformation of other dependent sources into a Voltage dependent 

source is outlined if figure 7-2. 

 As can be seen the unified approach depends on the introduction of an infinitesimal 

resistance Xo that can be later made to approach zero. 
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Figure 7-1 : Voltage Dependent current sources into the indefinite admittance matrix 

 

 Another novel methodology for populating the admittance matrix used in this work is to 

consider the independent sources to be admittances, therefore their symbols are added as 

prescribed by equation (7.1).  How this exactly works will be explained later in this chapter. 

 To obtain the transfer function from the indefinite admittance matrix, two constructs must 

be defined, the first order and second order cofactors defined respectively as follows, 

( )1 deti j
ijY += − ijY                                                           (7.4) 

                                    (7.5) ( ) ( )( ), sgn sgn 1 detp q r s
pq rsY p r q s + + += − − − pq,rsY

Where Yij represent the admittance matrix with rows I and column j removed , and Ypq,rs 

represents same matrix with rows p and r and columns q and s removed. 
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Figure 7-2 : Outline of transforming other dependent sources into voltage dependent current 

source 
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 Taking into account definitions (7.4) and (7.5)  the transfer function representing the 

voltage gain between arbitrary output at nodes p,q and input at nodes r,s is given by, 

,

,

pq rp s

rs rr ss

V Y
V Y

= q                                                                 (7.6) 

And the transfer impedance representing  the voltage at nodes p,q  versus an input current 

injected into node s and extracted from node r is given by, 

,pq rp sq

rs uv

V Y
I Y

=                                                                  (7.7) 

 Calculating the determinants of matrices that contain infinitesimal elements Xo  is 

simplified by  substituting an arbitrary matrix with another matrix as shown in figure 7-3. This 

follows from the determinant property that states that multiplying any row by an element 

changes the determinant by the same proportion. Infinitesimal elements are then cancelled out 

between the numerators and denominators of  (7.6) and (7.7). 

 The end product of applying the techniques of this chapter to matrices with symbolic 

elements is symbolic transfer functions that can be used to initiate the simulation as will be 

shown. 
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Figure 7-3 : Pre-determinant evaluation of limit finding 

 

7.4 Java Implementation 
 

 The object oriented language Java was chosen to implement the symbolic simulator, 

since the object paradigm allows for more modular and easily reusable code. This allows the 

concentration on each part of the design separately. Java also allows for easy web deployment 

for distributed use.  The main results obtained in this chapter were coded into a versatile 

Symbolic simulation engine that processes circuits inputted as netlists for simulation. The engine 

is a standalone component that can be interfaced with any user interface front end can only needs 

to provide the engine with a netlist, whose source might be a graphical schematic or just a typed 

in description of the circuit. 

The symbolic solver engine can be decomposed into three main components, as follows, 
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• The Netlist Parser module: a module that converts a Netlist into a corresponding 

symbolic indefinite admittance matrix, while storing the values for the elements and 

inputs and other parameters like switch states for further use. 

• Symbolic module: a module that implements the capability of constructing symbolic 

variables, aggregating them into expressions (multivariate polynomial or rational), 

and manipulating them in different ways (simplification, substitution, finding limits, 

etc. ). Those symbolic objects can also be combined into Symbolic Matrix Objects on 

which symbolic determinant calculation, cofactoring and population operations can 

be performed. This module is a critical part of SymCirc with which the tenets of the 

Indefinite Admittance Matrix approach for circuit analysis as described in this chapter 

are implemented.  

• Time Domain Module: a module that picks up a rational function of s with numerical 

coefficients that represents the Laplace transform of the output and through a process 

of root extraction, residue evaluation and applying the inverse laplace transform 

arrives at the time domain expressions of the signal at the output.  

• Switching Module:  The part of SymCirc that collects information about the switches 

within the circuit and their states with respect to time.   

 

Figure 7-4 shows an overview of the modules of the SymCirc Engine detailing their 

submodules and interactions. 
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Figure 7-4 : Overview of modules of SymCirc 
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7.5 Time-Domain and Frequency Domain Modules 
 

 The time and frequency domain modules of SymCirc consist of the Java implemented 

classes : Complex , Polynomial ,  RationalFunction  and LTIresponse. The purpose of  this set of  

modules is to represent any transfer function in the s domain with numerical parameters , and 

have the capability of finding the inverse Laplace Transform of those transfer functions to get the 

Time domain transform , and vice versa. 

The rudimentary Complex class is responsible for the representation and numerical 

manipulation of Complex numbers, since JAVA does not have native Complex number support 

(like most C like high level languages). The other rudimentary class is the Polynomial Class 

which represents univariate polynomials with complex coefficients , and allows for basic 

polynomial algebra like adding and subtracting and multiplying polynomials together to get new 

polynomials. Other functionality that is important for this application is the ability to find the 

roots of the polynomial and also deflate the polynomial of one of it’s roots (Divide that 

polynomial by x-r where r is a roots to get a polynomial of lesser degree).This functionality is 

important for implementing the inverse Laplace transform. 

 The problem of finding the roots of a polynomial is solvable to varying degrees of 

difficulty for all polynomials up to degree 4. For example the quadratic formula for second 

degree polynomials is well known and figure 7-5 shows how to get the roots of the fourth order 

polynomial equation. As can be seen the formula for the forth order equation is rather long and 

cumbersome and may cause inaccurate results when programmed into a computer due to limited 

machine accuracy. Actually, depending on the specific coefficients numerical methods might be 
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more accurate and have the prospect of getting as close to the actual roots as desired. But that is 

not the only obstacle, for  Abel’s impossibility theorem states that there is no general solution in 

radicals (roots  and powers added,subtracted  multiplied  and divided  together  )  in terms of the 

equation coefficients to equations of degree five or higher. A closed form of the roots at degree 

five or higher is impossible to find. 

The aforementioned fact makes it impossible to get a general symbolic expression 

describing the time domain response of an arbitrary circuit with more than four energy storage 

elements, therefore we must settle with substituting the numerical values of the parameters 

before attempting to find the time domain response. This is different from numerical analysis due 

to the fact that the time response is for all time t rather than a number of sampled points and is an 

exact expression. Also the Frequency domain transfer function is still fully symbolic. 

The standard algorithm for finding a root of a polynomial equation is the Newton-

Raphson method outlined in figure 8-6. It is not specific to polynomials and has quadratic 

convergence but is not guaranteed to converge. A better algorithm and the one implemented in 

SymCirc is Laguerre’s Method outlined in figure 7-7. It’s main advantage over Newton’s method 

is that it is guaranteed to converge no matter what the initial guess it (although guarantee is 

empirical), and also is converges to a complex root even if the initial guess is real. It converges 

cubically therefore is faster than Newton’s , but is still simple to implement compared to more 

sophisticated methods like Jenkins-Traub. 
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Figure 7-5 : Roots of fourth order polynomial equation 
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Figure 7-6 : Newton-Raphson Algorithm 
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Figure 7-7 : Laguerre’s Algorithm 

 

 After one root is found the polynomial is deflated and the remainder is applied to the root 

finding algorithm again until all roots are found. Of course the number of roots is equal to the 

degree of the polynomial. 

 All this functionality built into the Polynomial class comes into play in the next class in 

the hierarchy called “RationalPolynomial”. Basically it represents a rational function with the 

numerator and denominator being polynomials, therefore naturally it is built using two 

polynomial objects . Similar to the Polynomial class , any set of rational polynomial objects can 

be added ,subtracted , multiplied or divided with each other to obtain new rational polynomials. 

Furthermore the rational polynomials are always reduced to simplest form with common factors 
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between numerator and denominator removed. The paramount functionality included in this class 

is the ability to calculate the residues of any rational function. It is known that any transfer 

function T(s) can be written as, 

( ) 1 2 3

1 2 3

.......s s s s

N

A A A AT s
s s s s s s s s

= + + + +
− − − −

N

                                        (7.8) 

Where the complex constants As1 to AsN are called the residues of the rational functions, with 

one residue associated with each root of the denominator. The residues are calculated as follows, 

( ) ( ) ( ) ( )
1

1

1 lim
1 ! kk

m
m

kms ss s

dRes T s s s T s
m ds

−

−→=

⎧ ⎫⎡ ⎤= −⎨ ⎬⎣ ⎦− ⎩ ⎭                                   (7.9) 

Where is the multiplicity of the specific root sk, since the existence of repeated roots is 

possible.Then , those after the rational polynomial class calculates those residues and has 

knowledge of all the roots and there multiplicity the Inverse Laplace of the transfer function 

represented by the rational polynomial can be easily found by inversing each term in equation 

(8.8) and adding them together. Each term in 8.8 corresponds to, 

1 ks tmsk
sk

k

A A t e
s s

−⇔
−                                                    (7.10) 

Where again m is the multiplicity of the particular root sk. 

The result of invoking the Inverse Laplace function on a rational polynomial object gives 

an LTIresponse object, which is basically an object that represents the Transient response 

expression and allows it to be displayed in Latex or text format. It also allows for time 

118 
 



expression manipulation and evaluation at certain time points.  Finally a Laplace Transform 

functionality is included to find the Laplace transform of any arbitrary time expression consisting 

on an aggregate of sines, cosines and exponential functions. This allows the performance of 

simulations with inputs represented by those functions. 
 

 

7.6 Symbolic Manipulation Modules 
 

The previous section dealt with the modules relating to manipulating transfer functions 

with numerical coefficients and time expressions to obtain the response of a particular circuit. 

But to obtain the transfer functions it is necessary to implement the methodology of section 3 of 

this chapter. The methodology of section three is normally evaluated at specific numerical values 

for the parameters, yet what is required here is to apply is to General symbolic objects. 

The classes responsible for modeling those symbolic objects are “sop”, “rsop” and 

“SopMatrix” classes. There is no need to program a completely general algebraic symbol 

manipulator for SymCirc since the application of the operators outlined in section three can  

always result  in a rational form with both numerator and denominator being sums of products of 

algebraic symbols.  The “sop” class is the base construct and represent as its namesake implies a 

sum of products.  All the basic arithmetic binary operators can be applied to two sop’s and 

furthermore they can be expanded to any power. They can also be displayed in latex format 

sorted by symbol power. The “rsop” class is built upon the “sop” class and just joins two sop’s to 

form a rational sum of products. Finally the “SopMatrix” class represents a matrix of rsop 
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objects, and includes imports functionality for implementing section three such as symbolic 

determinant finding and cofactor finding. 

 The symbolic modules are the focal point in the hierarchal design of SymCirc , 

they communicate with both  the Netlist parser that has information about the circuit from the 

user interface, and with the lower level time domain modules. The end result of a particular 

simulation is a symbolic transfer function represented by an rsop object, which is then converted 

into a rational polynomial object by substituting the given parameter values.  

 

7.7 Graphical and User Interfaces and Top level modules 
 

 All the SymCirc engine needs to properly work is a Netlist representation of the circuit 

that must be modeled, the format of that Netlist has only to be compatible with the SPICE 

standard. For convenience a graphical circuit drawer can be added to SymCirc to speed up and 

ease circuit construction. A graphical circuit drawer developed in UCF was used for this purpose 

and a screenshot shown in figure 8-5. This GUI communicates with the top level of SymCirc by 

passing the Netlist  or simulation results and receiving simulation expressions. The top level 

modules include the parser , switchset module and source module. 

 The parser parses through the provided Netlist for the purpose of populating the 

indefinite admittance matrix. When it encounters sources and switches it stores them in the 

“source” and “switchset” objects respectively. The “source” object’s main purpose is to store 

initial and final conditions of the capacitors and inductors of the circuit at switching boundaries, 
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due to the fact that said boundary values are modeled as added sources to the circuit. The 

“switchset” stores the properties of all the switches in the circuit , their initial states and their 

switching time, communicating that information the mid-level modules of SymSirc.   

 

Figure 7-8 : Graphical User Interface Front end for SymCirc 
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7.8 Demonstration 
 

 For demonstration purposes the circuits in figure 8-9 were entered into SymCirc, and 

various simulation results were obtained and are shown in figures  7-10 to 7-14 

  

 

(a) 

 

(b) 

Figure 7-9 : Demonstration Circuits 
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Figure 7-10 : Transfer functions and time domain expressions for circuit of figure 7-9 (a) 
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 :

 

Figure 7-11: voltage waveform across C0 for circuit of figure 7-9 (b) 
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Figure 7-12 : Current waveform across C0 for circuit of figure 7-9 (b) 
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Figure 7-13 : Waveform of power dissipated through R1 for circuit of figure 7-9 (b) 
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Figure 7-14 : Frequency response with respect to input voltage for circuit 7-9 (a) 
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8 CHAPTER 8  
STATE-SPACE BASE SYMBOLIC SIMULATION FOR 

DC/DCCONVETERS 
 

8.1 Introduction and Motivation 
 

As stated in chapter 8 iterative numerical based simulation of DC/DC converters tends to be 

slow and prone to convergence difficulties, so a Symbolic approach is worth investigation. The 

idea is to use one of numerous CAS (Computer Algebra Systems) platforms to acquire symbolic 

formulas that describe the response of the converters as a function of all relevant parameters. 

While such symbolic closed forms are long winded and complex and very cumbersome to 

attempt to derive by hand, said modern CAS platforms makes deriving them quite attainable 

without reverting to first order simplifications. The benefits of having those formulas lies in 

immensely increasing the speed of simulation, and avoiding numerical issues related to ill-

conditioned systems. Also beneficial is the ease with which the effect of changing specific 

parameters (say, the inductance, or the capacitor’s esr) on the system response can be studied and 

plotted as will be shown within this chapter. This chapter will also investigate obtaining the 

dynamic characteristics through the resulting symbolic simulation, which can be then used to 

close the loop.  The Mathematica platform was the CAS chosen for demonstration and for all 

implementation code. 
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8.2 State-Space Base equations for Generic Second Order converter with Two 
Operating Modes  

 

It is natural to use the state space form as a starting point since it  presents a concise form 

of the differential equations governing the behavior of the converter, a form which many modern 

CAS platforms can directly manipulate. In a manner similar to what was done in chapter 4 for 

obtaining the discrete large signal model the discrete model of a generic Two mode converter 

can be shown to be,  
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                  (8.1)

 

 

Where  [ ]nTx  and  are vectors representing the states of the converter ( inductor 

current and capacitor voltage ) at time s nT and  (n+1)T where T is the switching period (1/Fs).  

Ak  and  Bk represent the A and B matrices of the system at mode k. Finally U is the vector 

representing the input, note that it is possible to have multiple inputs (e.g. and input voltage and a 

step current at the output modeled as an input). 

( )1n T⎡ +⎣x ⎤⎦

While one may be tempted to plug equation (8.1) directly into the Mathematica, that will not 

properly work since the resulting symbolic result will be huge and consume a lot of memory, so 

it will be practically impossible to deal with. Also as will be explored later the symbolic form of 

the result is dependent on the specific numerical values of the converter parameters.     

129 
 



Based on (9.1) it can be noted that at steady state  [ ]nTx  =  since the 

response should be stable and periodic, so this gives the steady state inductor current and 

capacitor voltage to be,   

( )1n T⎡ +⎣x ⎤⎦

⎦

⎥B U
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                (8.2) 

Aforementioned equation represents the minimum values of the rippled response at steady state 

as shown in figure 8-1. The maximum values of the rippled response is given by, 

( )
,max ,min

0

ss

1 ssss

d T
A d Td T

ss sse e dλ λ−⎡ ⎤
= + ⎢

⎢ ⎥⎣ ⎦
∫1A

1x x                                     (8.3) 

Therefore the magnitude of the ripple is, 

,max ,minripple ss ss= −x x x                                                          (8.4) 
 

 

Finally, the response at any continuous time t in between the sampled points of the discrete 

model is given for   by, t Mode I∈

( )

0

( ) [ ]
t

ttt e nT e dλ λ−⎡ ⎤
= + ⎢ ⎥

⎣ ⎦
∫ 11 AA

1x x B U

⎥B U

                                               (8.5) 

And for   by,  t Mode II∈

( )( ) ( )( ) ( )

( )
( ) n

n

t
t n d T t

n
n d T

t e n d T e dλ λ− + −

+

⎡ ⎤
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∫2 2A A

2x x                                  (8.6) 
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Figure 8-1 : Illustration of xripple  , xss,min and xss,max 

 

8.3 Conditions for Stability and One Cycle Periodicity  
 

 In the previous section the Steady-State point was found by assuming stability and one 

cycle periodicity as n approaches infinity. But can those conditions be assured ? The first step is 

to examine the nth
 state assuming that  x[0] is an initial state. For the first few switching  cycle 

iterations the following set of equations are obtained, 

[ ] [0] [0]T = +d dx A x B u  

2[2 ] [0] [0] [ ]T T= + +d d d dx A x A B u B u  

3 2[3 ] [0] [0] [ ] [2 ]T T= + + +d d d d d dx A x A B u A B u B u T  
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So , from induction , the nth state should be, 
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Where , 

( )1 n nd T d T
d e e−= 2 1A AA                                                                   (8.8) 
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And the input u[nT] is assumed to be constant through each switching cycle.  

 Now, if for given parameter values the Eigenvalues 1 2( , )λ λ of the Ad are determined the 

necessary and sufficient conditions for stability and periodicity are  1 1λ < and 2 1λ < . This 

can be shown by examining the part of  (8.7) responsible for the natural response . First the Ad 

matrix is  diagonalised   then raised to power n,  

11

2

0
0

n
n

n

λ
λ

−⎡ ⎤
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                                               (8.10) 

It is apparent that , 

1 2, 1

lim n
dn

λ λ
→∞

<

=A 0
                                                                       (8.11)

 

 

Which is expected since the natural response is supposed to die out and give way to the forced 

response. The case when  λ1= λ2=1  causes the natural response to keep  cycling,  
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That happen when one of the eigenvalues is 1 also. So care must me taken to when designing the 

converter to insure the eigenvalues are less than one. Similarly, if the portion responsible for the 

forced response is examined assuming constant input,   
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Diagonalising , 
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But the summations in (9.14) are geometric series of the form  
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only if 1 1λ < and 2 1λ < . 
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 In the majority of  cases designing DC/DC converter using simplified first order models 

yields systems with eigenvalues within the stable region, unless some parasitic value is so large it 

disrupts the tenets of the first order model.   

 

8.4 Approach to dealing with Defective Transition Matrices 
 

 Examining a component of the expression (8.1), say  , when the symbolic 

evaluation of that term is attempted the following is obtained , 

nd Te 1A

nd Te =1A  

ۏ
ێ
ێ
ێ
ێ
݁ۍ

ሺ௔భభା௔భరሻௗ೙
ଶFୱ ሺSinhሾ݀௡ߣଵ2Fs ሿሺܽଵଵ െ ܽଵସሻ ൅ Coshሾ݀௡ߣଵ2Fs ሿߣଵሻ

ଵߣ
െ
ሺ݁

ௗ೙ሺ௔భభା௔భరିఒభሻ
ଶFୱ െ ݁

ௗ೙ሺ௔భభା௔భరାఒభሻ
ଶFୱ ሻܽଵଶ

ଵߣ

െ
ሺ݁

ௗ೙ሺ௔భభା௔భరିఒభሻ
ଶFୱ െ ݁

ௗ೙ሺ௔భభା௔భరାఒభሻ
ଶFୱ ሻܽଵଷ

ଵߣ

݁
ሺ௔భభା௔భరሻௗ೙

ଶFୱ ሺSinhሾ݀௡ߣଵ2Fs ሿሺെܽଵଵ ൅ ܽଵସሻ ൅ Coshሾ݀௡ߣଵ2Fs ሿߣଵሻ
ଵߣ ے

ۑ
ۑ
ۑ
ۑ
ې

 

(8.16) 

Where, 

ଵߣ ൌ ඥ4ܽଵଶܽଵଷ ൅ ሺܽଵଵ െ ܽଵସሻଶ                                                 (8.17) 
 

ଵܣ ൌ ቂ
ܽଵଵ ܽଵଶ
ܽଵଷ ܽଵସቃ                                                              (8.18) 

And, 

 

Note that  ߣଵ is taken to be only the part of the eigenvalue under the square root, this is a 

convention that will be used throughout this chapter and leads to lessening the amount of 

symbols that must be defined. Before moving to evaluating the other components and 
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multiplying everything together the difficulty of the case where  ߣଵ ൌ 0 must be acknowledged 

and dealt with. That  case means the A matrix is a defective matrix , which complicates 

symbolically evaluating  the symbolic response , since it is clear that the components of (8.16) 

are indeterminate. The solution of this issue is to use the limit finding capabilities of  CAS 

systems to get the symbolic limit of the transition matrix  as ߣଵ approaches zero. For the example 

above the limit turns to be, 

1 0
lim ne
λ →

=1d TA

ۏ
ێ
ێ
௘ۍ

ሺೌభభశೌభరሻ೏೙
మF౩ ሺଶFୱା௔భభௗ೙ି௔భరௗ೙ሻ

ଶFୱ
௘
ሺೌభభశೌభరሻ೏೙

మF౩ ௔భమௗ೙
Fୱ

௘
ሺೌభభశೌభరሻ೏೙

మF౩ ௔భయௗ೙
Fୱ

௘
ሺೌభభశೌభరሻ೏೙

మF౩ ሺଶFୱି௔భభௗ೙ା௔భరௗ೙ሻ
ଶFୱ ے

ۑ
ۑ
ې
                 (8.19) 

And now (8.19) can be used instead of  (8.16)  whenever  ߣଵ ൌ 0 . This is actually an advantage 

to the numerical case where encountering a defective matrix case can cause the problem to 

become ill-conditioned , especially if  very close eigenvalues are misidentified as a pair.  

 It should be noted that defective matrices (or even singular ! ) sometimes occur when  

one of the parasitic parameters is idealized. It that case  finding the limit symbolically is superior 

to having to deal with the  numerical model. 

The above discussion clearly shows  that the symbolic response does not manifest in one form , 

but rather is dependent on the actual numerical values of the eigenvalues of each linear mode. 

Therefore what needs to be acquired is a family of symbolic formula’s that cover the defective 

case of the eigenvalues in any mode approaching each other. The coming section will commence 

with the detailed derivation of those families of symbolic formulas. 

135 
 



8.5 Derivation and Summary of  Symbolic Simulation Equations for basic Second 
Order Topologies 

 

 All second order topologies with two modes of operation share a linear piecewise State-

Space representation with Transition matrices A1  and  A2 and load matrices B1  and B2  where the 

notation is chosen so that the “1” index represents mode I and “2” index represents Mode “2” . 

The symbolic variables representing the components of  those matrices are defined to be, 

11 12

13 14

a a
a a
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

1A  

21 22
2

23 24

a a
a a
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A  

11 12

13 14

b b
b b
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

1B  

21 22
2

23 24

b b
b b
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

B                                                        (8.20) 

 

 In (8.20) the symbols aij and bij are functions of the particular Topology be it buck , boost 

or buck-boost and the actual values of the circuit elements constituting  those Topologies.  Now 

equation  (8.1) can be written in this form, 

( ) [ ]1 2 1 2

3 4 3 4

1n T nT
α α β β
α α β β
⎡ ⎤ ⎡

⎡ ⎤+ = +
⎤

⎢ ⎥ ⎢⎣ ⎦ ⎥
⎣ ⎦ ⎣

x x
⎦

U                                   (8.21) 
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Which implies that, 

( )11 2

3 4

n nd T d Te e
α α
α α

−⎡ ⎤
=⎢ ⎥

⎣ ⎦
2 1A A                                                       (8.22) 

( ) ( )
( )

( )

( )

( )

1

1 2

1
3 4 1

n

n

n

n d T
n d TD T

nT

n T
n T

n d T

e e d

e d

λ

λ

λ
β β
β β

λ

+
⎡ ⎤+ −− ⎣ ⎦

+
⎡ + − ⎤⎣ ⎦

+

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎡ ⎤ ⎣⎜ ⎟=⎢ ⎥

⎡ ⎤⎜ ⎟⎣ ⎦
+ ⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∫

∫

12

2

AA
1

A
2

B

B

⎦                                         (8.23) 

 Equations (8.22) and (8.23) represent the crux of the methodology of this chapter, and 

obtaining any symbolic formula from them relating  1α  to 4α  and  1β  to 2β  to all other 

parameters is  so long winded it is practically impossible to do it by hand. At this point , an 

automated CAS system like Mathematica comes to the rescue. 

First , the partial eigenvalues turn out to be, 

ଵߣ ൌ ඥ4ܽଵଶܽଵଷ ൅ ሺܽଵଵ െ ܽଵସሻଶ                                                         (8.24) 

ଶߣ ൌ ඥ4ܽଶଶܽଶଷ ൅ ሺܽଶଵ െ ܽଶସሻଶ                                                         (8.25) 

Next , if 1 0λ ≠  and   2 0λ ≠ , 

હ૚ ൌ
ଵ

ଶఒభఒమ
݁ି

ሺ೏೙షభሻሺೌమభశೌమరశഊమሻ
మF౩ ሺ2 ൬݁

೏೙ሺೌభభశೌభరషഊభሻ
మF౩ െ ݁

೏೙ሺೌభభశೌభరశഊభሻ
మF౩ ൰ ൬െ1 ൅ ݁

ሺ೏೙షభሻഊమ
F౩ ൰ ܽଵଷܽଶଶ ൅

݁
ሺೌభభశೌభరሻ೏೙

మF౩ ሺsinh ሺௗ೙ఒభ
ଶFୱ

ሻሺܽଵଵ െ ܽଵସሻ ൅ cosh ሺௗ೙ఒభ
ଶFୱ

ሻߣଵሻሺ൬1 െ ݁
ሺ೏೙షభሻഊమ

F౩ ൰ ܽଶଵ െ ܽଶସ ൅ ଶߣ ൅

݁
ሺ೏೙షభሻഊమ

F౩ ሺܽଶସ ൅  ଶሻ                                                                                                               (8.26)ߣ
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હ૛ ൌ
ଵ

ଶఒభఒమ
݁ି

ሺ೏೙షభሻሺೌమభశೌమరశഊమሻ
మF౩ ൭െ2݁

ሺೌభభశೌభరሻ೏೙
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cosh ቀௗ೙ఒభ
ଶFୱ

ቁ ଵቁߣ െ ൬݁
೏೙ሺೌభభశೌభరషഊభሻ

మF౩ െ ݁
೏೙ሺೌభభశೌభరశഊభሻ
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ଵ

ଶఒభఒమ
݁ି

ሺ೏೙షభሻሺೌమభశೌమరశഊమሻ
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ሺೌభభశೌభరሻ೏೙
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మF౩ െ ݁
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 ଶ)                                                                                                                                        (8.29)ߣ
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మF౩ ܽଵସߣଵ ൅ ݁
೏೙ഊభ
F౩ ܽଵସߣଵሻ ൅ ܽଵଷሺߣଵ ൅ ݁

ሺೌభభశೌభరሻ೏೙
మF౩ ሺSinhሾௗ೙ఒభ

ଶFୱ
ሿሺܽଵଵ ൅ ܽଵସሻ െ

Coshሾௗ೙ఒభ
ଶFୱ

ሿߣଵሻሻሺሺെ1 ൅ ݁
ሺషభశ೏೙ሻഊమ

F౩ ሻܽଶଵ ൅ ܽଶସ ൅ ଶߣ ൅ ݁
ሺషభశ೏೙ሻഊమ

F౩ ሺെܽଶସ ൅  ଶሻሻሻሻ                 (8.33)ߣ

 
The values of the iα ’s  and the iβ ’s for the other  cases  where, 

1. nd  ଶߣଵ ൌ 0 a ߣ ് 0 

2. nd  ଶߣଵ ് 0 a ߣ ൌ 0 

ଵߣ .3 ് 0 and  ߣଶ ് 0 

can be obtained from  (8.26)-(8.33) through keeping any ߣ௜ that is equal to zero as a symbol , and 

then  finding the algebraic limit of the resultant expression as ߣ௜ approaches zero. This can be 

straightforwardly done with any CAS package. In case it is desired to implement the model in C 

or any other non-CAS programming environment, all the expressions of the limits for all cases 

can be statically computed only once in a CAS system and then plugged in into such 

programming environment. Equations for other three  cases are not listed here  due to their 

length and because they add no substance to the matter. 

 Tables  8-1 to 8-3 shows what the aij’s and  bij’s are equivalent to for the case of the three 

main second order topologies, the buck , the boost and the buck-boost(Shown in figure 8-2 , with 

all relevant parameters and parasitics). 

 It can also be noted  that the λi’s need not exactly be zero to use the limited expression , it 

is sufficient for them to be close to zero. This makes this methodology superior to numerical 

evaluation at the difficult situation where double roots appear to be distinct and complex 

conjugate because of limited machine accuracy.  
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Table 8-1 : : aij and bij  parameters for the Buck Converter 

11 12

13 14

a a
a a
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

esr RL⋅ rL esr⋅+ rL RL⋅+ rs1 esr⋅+ rs1 RL⋅+( )−

L esr RL+( )⋅

RL
Co esr RL+( )⋅

RL−

L esr RL+( )⋅

1−
Co esr RL+( )⋅

⎡⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥⎦  

21 22

23 24

a a
a a
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

esr RL⋅ rL esr⋅+ rL RL⋅+ rs2 esr⋅+ rs2 RL⋅+( )−

L esr RL+( )⋅

RL
Co esr RL+( )⋅

RL−

L esr RL+( )⋅

1−
Co esr RL+( )⋅

⎡⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥⎦  

11 12

13 14

b b
b b
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

1
L

0

esr
RL

L esr RL+( )⋅
⋅

RL−

Co esr RL+( )⋅

⎡⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥⎦  

21 22

23 24

b b
b b
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

0

0

esr
RL

L esr RL+( )⋅
⋅

RL−

Co esr RL+( )⋅

⎡⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥⎦  
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Table 8-2 : aij and bij  parameters for the Boost Converter 

11 12

13 14

a a
a a
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

rL rs1+

L
−

0

0

1
Co RL esr+( )⋅

−

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦  

21 22

23 24

a a
a a
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

esr2

L RL⋅ L esr⋅+

esr rL+ rs2+

L
−

RL
Co RL esr+( )⋅

RL
L RL esr+( )⋅

−

1
Co RL esr+( )⋅

−

⎡⎢
⎢
⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎥
⎥
⎦  

11 12

13 14

b b
b b
⎡ ⎤
⎢ ⎥
⎣ ⎦  

1
L

0

0

RL
Co RL esr+( )⋅

−

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦  

21 22

23 24

b b
b b
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

1
L

0

RL esr⋅

L RL esr+( )⋅

RL
Co RL esr+( )⋅

−

⎡⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥⎦  
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Table 8-3 : : aij and bij  parameters for the Buck-Boost Converter 

 Buck-Boost 

 

rL rs1+

L
−

0

0

1
Co RL esr+( )⋅

−

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦  

 

esr2

L RL⋅ L esr⋅+

esr rL+ rs2+

L
−

RL
Co RL esr+( )⋅

−

RL
L RL esr+( )⋅

1
Co RL esr+( )⋅

−

⎡⎢
⎢
⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎥
⎥
⎦  

 

1
L

0

0

RL
Co RL esr+( )⋅

−

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦  

 

0

0

RL esr⋅

L RL esr+( )⋅
−

RL
Co RL esr+( )⋅

−

⎡⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥⎦  

11 12

13 14

a a
a a
⎡ ⎤
⎢ ⎥
⎣ ⎦

21 22

23 24

a a
a a
⎡ ⎤
⎢ ⎥
⎣ ⎦

11 12

13 14

b b
b b
⎡ ⎤
⎢ ⎥
⎣ ⎦

21 22

23 24

b b
b b
⎡ ⎤
⎢ ⎥
⎣ ⎦
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(a) 

 

(b) 

 

(c) 

Figure 8-2 : (a) Buck ,(b) Boost and (c) Buck-Boost with all relevant parameters and parasitic 
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8.6 Symbolic linearization for Acquisition of dynamic characteristics 
 

 Now comes the problem of deriving the dynamic characteristics through the derived 

symbolic formulas of the previous section. Naturally, some sort of linearization is necessary. 

This can be done through the classical technique of decomposing each symbolic variable that is a 

function of the state and the duty cycle into steady-state and small signal components .  As 

Follows, by manipulating (8.21),  

( ) [ ]( )1 2 1 2
,min ,min

3 4 3 4

1 2 1 2

3 4 3 4

1ss ssn T nT
α α α α
α α α α

β β β β
β β β β

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎡ ⎤+ + = + +⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤⎡ ⎤

+ +⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

x x x x

U

� �
� �

� �

� �
� �

                            (8.34) 

Separating the  small signal components  from the large signal ones gives, 

( ) [ ]

[ ]

1 2 1 2
,min ,min

3 4 3 4

1 2 1 2
,min

3 4 3 4

1 2 1 2

3 4 3 4

1ss ss

ss

n T nT

nT

α α α α
α α α α

α α α α
α α α α

β β β β
β β β β

⎡ ⎤ ⎡ ⎤
⎡ ⎤+ + = +⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

+ +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤
+ + ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

x x x x

x x

U U

� �

� � � �
�

� � � �
� �
� �

                                             (8.35) 

Cancelling products of small perturbation variables finally gives, 

( ) [ ]1 2 1 2 1 2
,min

3 4 3 4 3 4

1 ssn T nT
α α α α β β
α α α α β β

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎡ ⎤+ = + + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
x x x

� �� �
� � � �� �

U
                       (8.35) 
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 To emphasize the fact that each small-signal symbol is a linear function  of  the small 

change of the duty cycle, the convention of factoring out the duty cycle variable will be 

followed, giving the alternative form, 

( ) [ ] [ ] [ ]1 2 1 2 1 2
,min

3 4 3 4 3 4

1 ssn T nT d nT d nT
α α α α β β
α α α α β β

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎡ ⎤+ = + + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
x x x

� �� � � �� � � �� �
U

             (8.36) 

The above recurrence equation represents a linear discrete system with constant 

coefficients.  Therefore it can be used to investigate  the dynamic properties of the system , and 

to insure a stable closed loop design through various Linear Control Theory techniques. One 

popular technique is the Bode plot that represents the frequency response of the open loop 

system. It is obtained by first applying the Hilbert transform to (8.36), 

[ ] [ ]1 2 1 2 1 2
,min

3 4 3 4 3 4

[ ] [ ]ssz z z d z d z
α α α α β β
α α α α β β

⎡ ⎤⎡ ⎤ ⎡ ⎤
= + + ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

X X x
� �� �
� �� �

U
                         (8.37) 

If  the converter is operating in voltage mode control , then there is no interest in both states and 

only one variable (the output voltage in VM) must be regulated. In that case  the variable of 

interest is obtained by multiplying X[z] with a special Matrix C , and then after rearranging  

(8.37) becomes, 

[ ]
1

1 2 1 2 1 2
1 2 ,min

3 4 3 4 3 4

[ ]
[ ] ss
z c c z

d z
α α α α β β
α α α α β β

− ⎡ ⎤⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤
= − +

⎤
⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

Y I x
� �� �
� �� �

U                        (8.38) 
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Table (8-4) shows  [ ]1 2c c  for all 3 major topologies and for the regulated output being 

the Output voltage. It is apparent that the form of the C matrix for current mode is trivial, and 

always equal to[ ]1 0 . 

 

Table 8-4 : [ ]1 2c c  for different controlled outputs and topologies 

 [ ][ ]z z= oY V  

Buck 
L L

L L

R esr R
R esr R esr
⎡ ⎤
⎢ ⎥+ +⎣ ⎦

 

Boost 0 L

L

R
R esr

⎡ ⎤
⎢ ⎥+⎣ ⎦

 

Buck-Boost 0 L

L

R
R esr

⎡ ⎤
⎢ ⎥+⎣ ⎦

 

 

 It is not necessary to find the static forms of the 'i sα�  and 'i sβ� and then store them 

internally to optimize simulation speed,  since they need only be computed once , unlike the case 

of  the  'i sα  and 'i sβ  which are functions of the particular cycle and the particular duty 

modulation within that cycle. Of course the  'i sα  and 'i sβ  are found by simply computing  

'i sα  and 'i sβ  at the steady state operating point (with steady state duty cycle of , say , Dss). An 

algorithm that can be implemented in a genenal CAS platform is outlined in figure 8-3. 
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Figure 8-3 : Algorithm for CAS aided acquisition of the perturbed symbolic variables 

 

8.7 Example : Application to a synchronous Buck topology implemented  in 
Mathematica 

 

 This section goes through an example of the technique explained in this chapter using the 

industry standard Computer Algebra System “Mathematica”. It is one of the oldest and most 

powerful CAS platforms available in the market with superior symbolic manipulation and data 

visualization capabilities, both those properties aid symbolic simulation immensely.  A 

Synchronous Buck converter is chosen with the following  parameters(refer to figure  8-2 (a) ), 

1 2

12 , 3.3 , 0.5 , 20

33 , 10 , 10 , 50
0 , 917 , 40

g o L L

s s s

o o

V V V V R r

esr m r m r m F KHz
i L mH C F

μ

μ

= = = Ω = Ω

= Ω = Ω = Ω =

= = =
 

The buck is represented within Mathematica as a list, which is manipulated  through the 

programs  written in a functional programming paradigm, similar to Lisp. After implementing 

the main portion of the simulation code guided by the equations presented in this chapter any of 
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the parameters of the converter can be manipulated at will and the effect of varying them can be 

easily observed. In the meantime the processing time is a fraction of the time needed for 

numerical simulation. For example, obtaining the large signal discrete response for a certain duty 

cycle signal through symbolic simulation for 800 switching cycles takes one tenth of the time 

needed to obtain same results from the numerical method. A tenfold improvement in simulation 

time is rather remarkable and arises due to the fact that the time consuming step of solving for 

the eigenvalues and eigenvectors is done only once symbolically, then used and reused for each 

particular topology and design. The results of said discrete large signal symbolic  simulation  are 

shown in figure 8-4. 
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Figure 8-4 : Discrete Large signal response for (a) Output Voltage , (b) Inductor Current 
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 The switching response as described in (8.5) and (8.6) can be built upon the result of the 

discrete simulation. Moreover it is in a symbolic form as a function of time which allows 

arbitrary precision in plotting it without having to redo the simulation. For example assuming a 

steady duty cycle of 0.3 the switching expressions for the first ten switching cycles is found to 

be, 

( )Li t =  

 

( )cv t =  

23.9986+ 0.00298635‰-49445.2 t - 24.0015‰-551.571 t 0 § t < 6.μ 10-6

5.55112μ 10-17 ‰-24998.4 t coshH24 446.8 tL + 8.32667μ 10-17 ‰-49445.2 t - 1.77636μ 10-14 ‰-551.571 t t ¥ 0.0001
0.0784908‰-24998.4 t coshH24 446.8 tL + 0.000160366‰-49445.2 t - 0.000119594‰-551.571 t + 0.0808743‰-24998.4 t sinhH24 446.8 tL 6.μ 10-6 § t < 0.00002
0.0776936‰-24998.4 t coshH24 446.8 tL + 0.00937124‰-49445.2 t - 24.2683‰-551.571 t + 0.0824426‰-24998.4 t sinhH24 446.8 tL+ 23.9986 0.00002 § t < 0.000026
0.154343‰-24998.4 t coshH24 446.8 tL + 0.00258768‰-49445.2 t - 0.000725805‰-551.571 t + 0.167126‰-24998.4 t sinhH24 446.8 tL 0.000026 § t < 0.00004
0.148553‰-24998.4 t coshH24 446.8 tL + 0.0304937‰-49445.2 t - 24.5382‰-551.571 t + 0.173985‰-24998.4 t sinhH24 446.8 tL+ 23.9986 0.00004 § t < 0.000046
0.217189‰-24998.4 t coshH24 446.8 tL + 0.0144205‰-49445.2 t - 0.00152126‰-551.571 t + 0.268546‰-24998.4 t sinhH24 446.8 tL 0.000046 § t < 0.00006
0.192423‰-24998.4 t coshH24 446.8 tL + 0.0978007‰-49445.2 t - 24.8113‰-551.571 t + 0.294503‰-24998.4 t sinhH24 446.8 tL+ 23.9986 0.00006 § t < 0.000066
0.234343‰-24998.4 t coshH24 446.8 tL + 0.0603419‰-49445.2 t - 0.0023942‰-551.571 t + 0.417619‰-24998.4 t sinhH24 446.8 tL 0.000066 § t < 0.00008
0.144556‰-24998.4 t coshH24 446.8 tL + 0.306721‰-49445.2 t - 25.0874‰-551.571 t + 0.50865‰-24998.4 t sinhH24 446.8 tL+ 23.9986 0.00008 § t < 0.000086
0.103566‰-24998.4 t coshH24 446.8 tL + 0.221311‰-49445.2 t - 0.00330263‰-551.571 t + 0.716517‰-24998.4 t sinhH24 446.8 tL 0.000086 § t < 0.0001

 

(8.39) 

-11.9993‰-24 998.4 t coshH24 446.8 tL - 12.27‰-24 998.4 t sinhH24 446.8 tL + 11.9993 0 § t < 6.μ 10-6

1.77636μ 10-15 ‰-24998.4 t coshH24 446.8 tL + 4.16334μ 10-17 ‰-551.571 t + 1.24345μ 10-14 ‰-24998.4 t sinhH24 446.8 tL t ¥ 0.0001
1.21937‰-24998.4 t coshH24 446.8 tL - 8.25176‰-49445.2 t + 0.165123‰-551.571 t - 26.5866‰-24998.4 t sinhH24 446.8 tL+ 11.9993 0.00008 § t < 0.000086
-8.11094‰-24 998.4 t coshH24 446.8 tL - 2.31353‰-49 445.2 t + 0.123089‰-551.571 t - 16.9771‰-24 998.4 t sinhH24 446.8 tL + 11.9993 0.00006 § t < 0.000066
-11.0238‰-24 998.4 t coshH24 446.8 tL - 0.576379‰-49 445.2 t + 0.0815341‰-551.571 t - 13.7882‰-24 998.4 t sinhH24 446.8 tL + 11.9993 0.00004 § t < 0.000046
-11.8447‰-24 998.4 t coshH24 446.8 tL - 0.10763‰-49 445.2 t + 0.0404806‰-551.571 t - 12.6943‰-24 998.4 t sinhH24 446.8 tL + 11.9993 0.00002 § t < 0.000026
10.0299‰-24998.4 t coshH24 446.8 tL - 13.8918‰-49445.2 t + 0.207308‰-551.571 t - 10.0332‰-24998.4 t sinhH24 446.8 tL 0.000086 § t < 0.0001
2.73395‰-24998.4 t coshH24 446.8 tL - 4.15374‰-49445.2 t + 0.164809‰-551.571 t - 2.73637‰-24998.4 t sinhH24 446.8 tL 0.000066 § t < 0.00008
0.652878‰-24998.4 t coshH24 446.8 tL - 1.16394‰-49445.2 t + 0.122788‰-551.571 t - 0.654416‰-24998.4 t sinhH24 446.8 tL 0.000046 § t < 0.00006
0.116927‰-24998.4 t coshH24 446.8 tL - 0.289725‰-49445.2 t + 0.0812637‰-551.571 t - 0.11766‰-24998.4 t sinhH24 446.8 tL 0.000026 § t < 0.00004
0.00720857‰-24998.4 t coshH24 446.8 tL - 0.0540202‰-49445.2 t + 0.0402857‰-551.571 t - 0.0073295‰-24998.4 t sinhH24 446.8 tL 6.μ 10-6 § t < 0.00002
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The range of switching cycles to be obtained can be adjusted so as to zoom in on a desired time 

window of the switched response, the graphs of the above equations are shown in figure 8-5. A 

plot of a time window closer to steady state between the 500th and the 510th switching cycles is 

shown in figure (8-6). 

 The presented methodology  allows for the  freedom of examining the effect on the 

response of the variance of any parameter , as seen in figure (8-7) where  one switching cycle at 

steady state is plotted for all possible duty ratios in 0.1 increments. 

 

 0.00002 0.00004 0.00006 0.00008 0.0001
t

0.1

0.2

0.3

iLHtLê êVcHtL

Figure 8-5 : First 10 switching cycles simulation for d=0.3  
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Figure 8-6 : Switching cycles between 500Ts and 510Ts 

 

Figure 8-8 shows the ripple in the inductor current and capacitor voltage waveforms as a 

function of switching frequency. As expected increasing the frequency reduces the ripple.  

Figure 8-9 shows the inductor current ripple versus two other parameters, the inductance L and 

the duty cycle of the operating point. 
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Figure 8-7 : One (a) Inductor current and (b) Capacitor voltage switching cycle plotted versus d 

between 0 to 1 in 0.1 increments 
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Figure 8-8 : Current and voltage ripple vs Frequency 
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 Regarding the dynamic characteristics of the converter, the transfer function at any 

operating point can be quickly obtained and the frequency response plotted. For this particular 

converter the transfer function turns out to be, 

Hሺzሻ ൌ ଴.଴ଵହଶଷ଻ଶ଼ଵସ଼଻଴ଵ଼ଷଽା଴.଴଺଻ସସଷ଻ସ଻ଽଶ଴ଷଶଽହ୸
଴.ଷ଺଻ଽ଴ଷଶଵସ଻ଷ଴ଽ଺ଶଵ଺ିଵ.ଷ଺ଵ଴ଵଷଷ଻଺ସ଻ଵ଴଻ଽଶ୸ା୸మ

                               (8.40) 
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Figure 8-9 : Inductor current ripple versus (a) inductance , and (b) Duty Cycle ratio 
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So the Magnitude and phase frequency response expressions are found  to be, 

ฬH ൬e
୨ଶ஠୤
Fୱ ൰ฬ

ୢୠ

ൌ  

20Log

ۉ

ۇ
ටሺ0.01524 ൅ 0.06744Cosሾ ߨ݂

25000ሿሻ
ଶ ൅ 0.004549Sinሾ ߨ݂

25000ሿ
ଶ

ටሺ0.3679 െ 1.361Cosሾ ߨ݂
25000ሿ ൅ Cosሾ ߨ݂

12500ሿሻ
ଶ ൅ ሺെ1.361Sinሾ ߨ݂

25000ሿ ൅ Sinሾ ߨ݂
12500ሿሻ

ଶ
ی

ۊ

Logሾ10ሿ  

(9.41) 

Phase ቆH ൬e
୨ଶ஠୤
Fୱ ൰ቇ ൌ

180Arg൭ 0.01524 ൅ 0.06744݁
௜௙గ
ଶହ଴଴଴

0.3679 െ 1.361݁
௜௙గ
ଶହ଴଴଴ ൅ ݁

௜௙గ
ଵଶହ଴଴

൱

ߨ  

(8.42) 

Which can be plotted as a bode plot. Then frequency control techniques can be used to design the 

converter feedback control insuring overall stability. The frequency response for this particular 

design is shown in figure 8-10. Frequency response methods of feedback control are very 

popular but not the only possibility, for other techniques like pole placement can be used.  

 Another aspect of the dynamic characteristics that can be easily visualized within this 

setting is the effect of parameter variance on the frequency response, as exposed in figures 8-11 

to 8-13.     
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Figure 8-10 : Bode Plot of frequency response 
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Figure 8-11 : Frequency response versus variance in operating point (Duty Cycle) 
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Figure 8-12 : Frequency response versus output filter capacitance 
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Figure 8-13 : Frequency response versus output filter Inductance 
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9 CHAPTER 9  
CONCLUSION AND FUTURE WORK 

 

9.1 Conclusion 
 

 In this Dissertation, after a review of the main average modeling techniques for switching 

DC/DC converters a general small-signal discrete state-space model was developed. The main 

approximation in deriving this model was representing the duty cycle modulations that control 

the SMPS switches as weighted impulse functions. To make the model more accurate steady 

state waveform acquisition was utilized using Fourier analysis. 

 Then a large signal model was derived which turned out to be a linear function with 

respect to the converter inputs but nonlinear with respect to  the duty cycle modulations as 

expected. Building upon that model an alternate small signal model was derived. Throughout the 

derivations certain symmetric properties in the form of the state-space equations were helpful in 

introducing definitions that simplified the notation to a large extent. 

 Both the Large and the small signal model were implemented for the case example of the 

Half-Bridge DC/DC with current doubler topology. All 3 main control schemes of the Half-

Bridge (Symmetric, Asymmetric, DCS) were considered and their dynamic properties such as 

the frequency response and time response were compared. Finally a lab prototype was built with 

a compensator and its frequency response was compared with the frequency response obtained 

from the developed small signal models.  
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 Chapter 6 of this dissertaion reviewed an implementation of the derived models in 

MATLAB as a Design Platform GUI. After the description of the different components of this 

platform a design example was presented. 

 Chapter 7 embarked on detailing a Java based symbolic simulation tool that utilized a 

number of novel techniques to improve symbolic simulation time. While Chapter 8 dealt with a 

general state-space symbolic simulation approach tailored for DC-DC PWM converters. 
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9.2 Future Work 
 

Future work will include more verification of the models derived here for both open loop and 

close loop. The main two  expansions on the models will be to generalize them more so that they 

work for  a converter with an arbitrary number of switches , the symmetry inherit in the model 

equations will enable the induction of this most general model. Then most importantly an 

extension to the case of DCM will be attempted. 

Other ideas in Discrete modeling will be investigated, such as the use input decimation so 

that it is possible to sample the input at a much higher sampling rate than the switching 

frequency. The reason this could be interesting is that continuous models in general account for 

both input and duty cycle as continuous, while discrete models account for both input and duty 

cycle as discrete, while in reality the input is continuous and the duty cycle is discrete. This idea 

if successfully implemented can mitigate any inaccuracies that abound when attempting to get an 

input to output transfer function from a discrete model. 

All of this future work will be published in the open literature. 
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