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ABSTRACT 

To relieve energy shortage and environmental pollution issues, renewable energy, 

especially PV energy has developed rapidly in the last decade. The micro-inverter systems, 

with advantages in dedicated PV power harvest, flexible system size, simple installation, 

and enhanced safety characteristics are the future development trend of the PV power 

generation systems. The double-stage structure which can realize high efficiency with nice 

regulated sinusoidal waveforms is the mainstream for the micro-inverter. 

This thesis studied a double stage micro-inverter system. Considering the intermittent 

nature of PV power, a PFC was analyzed to provide additional electrical power to the 

system. When the solar power is less than the load required, PFC can drag power from the 

utility grid. 

In the double stage micro-inverter, the DC/DC stage was realized by a LLC converter, 

which could realize soft switching automatically under frequency modulation. However it 

has a complicated relationship between voltage gain and load. Thus conventional variable 

step P&O MPPT techniques for PWM converter were no longer suitable for the LLC 

converter. To solve this problem, a novel MPPT was proposed to track MPP efficiently. 

Simulation and experimental results verified the effectiveness of the proposed MPPT. 

The DC/AC stage of the micro-inverter was realized by a BCM inverter. With duty 

cycle and frequency modulation, ZVS was achieved through controlling the inductor 

current bi-directional in every switching cycle. This technique required no additional 

resonant components and could be employed for low power applications on conventional 

full-bridge and half-bridge inverter topologies. Three different current mode control 

schemes were derived from the basic theory of the proposed technique. They were 

referred to as Boundary Current Mode (BCM), Variable Hysteresis Current Mode 

(VHCM), and Constant Hysteresis Current Mode (CHCM) individually in this paper with 

their advantages and disadvantages analyzed in detail. Simulation and experimental 
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results demonstrated the feasibilities of the proposed soft-switching technique with the 

digital control schemes. 

The PFC converter was applied by a single stage Biflyback topology, which 

combined the advantages of single stage PFC and flyback topology together, with further 

advantages in low intermediate bus voltage and current stresses. A digital controller 

without current sampling requirement was proposed based on the specific topology. To 

reduce the voltage spike caused by the leakage inductor, a novel snubber cell combining 

soft switching technique with snubber technique together was proposed. Simulation and 

experimental waveforms illustrated the same as characteristics as the theoretical analysis. 

In summary, the dissertation analyzed each power stage of photovoltaic 

micro-inverter system from efficiency and effectiveness optimization perspectives. 

Moreover their advantages were compared carefully with existed topologies and control 

techniques. Simulation and experiment results were provided to support the theoretical 

analysis. 
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CHAPTER ONE: INTRODUCTION 

1.1 World Energy Status 

Since the Industrial Revolution, fossil fuels have been extensively used. To release the 

energy stored in fossil fuels, combustion is required. During this process, a release of emissions 

and particulates is unavoidable into the atmosphere. Moreover, transportation, and extraction of 

fossil fuels cause environmental pollution along with serious consequences such as air pollution, 

water deterioration, soil degradation, and global warming.  

Presently fossil fuels dominate the energy consumption in the world. Based on the statistics, 

86.4% of the primary energy consumption in the world comes from fossil fuels[1], and 67.6%[2] 

of the electric energy consumption comes from fossil fuels. As energy demand in the world keeps 

increasing (which is expected to rise from 13934 TWh in 2001 to 24673 TWh in 2025 at an 

annual rate of 2.4%[3, 4]), with the reserves fossil fuels being very limited (Years of production 

left in the ground with the current proved reserves and flows: Coal: 148 years, Oil: 43 years, 

Natural gas: 61 years[5]), the energy structure requires adjustment.    

Renewable energies, including wind power, solar power, biomass, geothermal power, tidal 

and wave power, and nuclear power have been developed and utilized to adjust the energy 

structure. 

Nuclear energy is suitable for large scale application nowadays[6]. However, the 

well-known tragic consequences to the Fukushima nuclear plant from the earthquake and tsunami 

in Japan on 11 March 2011, has led to a much stronger political focus on renewable energy as the 

solution to the energy problems. Both Japan and Germany have recently announced the 

abandonment of expanding nuclear power usage.[7]  

The PV power generation could be implemented for large scale with significant advantages 

[8] below has developed quickly in recent decades.: 



2 

 

 no water needs; 

 no moving parts that allows cheaper maintenance; 

 effective use of both direct and scattered (diffuse)radiation; 

 no need in high qualified personnel; 

 noiseless performance; 

 no hazardous substance emissions, made of green materials 

 can be used for systems of any capacity; 

 flat construction allows to integrate the systems in both new and existent buildings; 

 can be used as building materials, no additional buildings and infrastructure are necessary; 

 It is possible to create a distributed system; 

Since the first Photovoltaic cell was made in 1954, in Bell Laboratories [9] by Daryl Chapin, 

Calvin Souther Fuller and Gerald Pearson, PV power generation has been proposed and studied. 

The first profitable market of PV power generation is the aerospace application. In the recent 

decades, significant efforts on new materials, device concepts and processes, and manufacturing 

technologies have been made to bring down the cost and expand the PV power applications. 

To support the development of the PV power, many countries have policies (eg: feed-in tariffs 

and tax breaks), plans and targets to stimulate the PV growth [10-13]. 

Driven by these incentives, the cost of typical solar PV modules has fallen from nearly US$19 

per Wp(watts at peak output) in 1982 to around US$1.59 per Wp today[14]. The global PV module 

price curves for different PV materials are illustrated as Figure 1.1.  

The global installed PV capacity has multiplied by a factor of 37 in ten years from 1.8GW in 

2000 to 67.4GW at the end of 2011, a growth rate of 44% per year[14]. Figure 1.2 illustrates the 

global solar PV capacity bars based on different local regions. 

The future developments of PV generation mainly rely on the technical and strategic 

developments to decrease the cost and increase the reliability in advance. 

http://en.wikipedia.org/w/index.php?title=Daryl_Chapin&action=edit&redlink=1
http://en.wikipedia.org/wiki/Calvin_Souther_Fuller
http://en.wikipedia.org/wiki/Gerald_Pearson
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Figure 1. 1PV module price experience [14] 

 
Figure 1. 2 Global solar PV capacity [14] 

 

APEC refers to Asia-Pacific Economic Cooperation in Figure. 1.2. 
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1.2 Solar Power System 

Solar power systems can be divided into two parts: PV cells which are grouped together to 

form a PV panel to convert solar power into voltage variance DC electrical power; and power 

components system (which is generally referred to as power generation system), including DC/DC 

converters, DC/AC inverters, controllers, etc., which convert the voltage variance DC power into 

DC or AC power differed by load requirements. The developments of PV power system mainly 

rely on the technical developments on the two parts individually. 

1.2.1 PV Cell Technology 

There are a wide range of PV cell technologies on the market today, using different types of 

materials. Much research has been focused on PV cells and materials as they constitute almost 50% 

of the system cost. Based on the differences of manufacturing process and commercial maturity, 

PV cell production technologies can be classified into three generations: 

1.2.1.1 First Generation 

The first generation uses wafer-based crystalline silicon (c-Si) technology, either single 

crystalline (sc-Si) or multi-crystalline (mc-Si). Single-crystalline cells are more efficient than 

multi-crystalline cells but are more expensive to manufacture. This generation is dominated by 

Silicon (Si) and some extent Gallium-Arsenide (GaAs)  and is one of the mainstream PV 

technologies used today.   

1.2.1.2 Second Generation 

The second generation are based on thin-film PV technologies and can be classified into 

three types: 1) amorphous (a-Si) and micromorph silicon (a-Si/uc-Si); 2) Cadmium-Telluride 

(CdTe); and 3) Copper-Indium-Selenide (CIS) and Copper-Indium- Gallium-Diselenide (CIGS). 

Other PV cell technologies include the multi-junction PV cells which absorb and convert more 

solar spectrum into electricity compared with single-junction cells. The thin-film PV cells are also 
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widely used in today's market.  

1.2.1.3 Third Generation 

The Third generation PV cells include technologies, such as concentrating PV (CPV), 

dye-sensitized, organic PV cells and quantum dots, which are still under development and could 

become viable commercial options in the future to reduce the cost. 

 
Figure 1. 3 Three generations of PV cells [15, 16] 

 

Figure.1.3 illustrates the comparison of these three PV cell generations in efficiency and cost. 

1.2.2 PV Power Generation System  

The PV generation can be generally divided into two types: off-grid systems and 

grid-connected systems. The off-grid systems produce power independently of the utility grid. 

Examples are telecommunications units, remote stations, rural electricity supply, and auxiliary 

power units for emergency services or military applications. Up until the mid-1990s, most PV 

systems were standalone off-grid applications. The grid-connected systems are connected with the 

utility grid. Some of these systems feed the local load requirement first and provide surplus power 

into grid, while others feed all the power into the grid without considering local load. Because the 

utility grid provides unlimited storage power, the system could take care of large load variations. 
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Since 2005, the grid connected systems have steadily gained market because of the governments' 

promotions. Today they represents about 75% of the global PV market today.[1, 2]  

Figure 1.4 illustrates the disparity in different countries' market distribution between 

grid-connected and off-grid installations. 

 
Figure 1. 4 Market share of cumulative installed PV capacity, by application (IEA 2011) 

 

1.2.2.1Conventional Grid-Connected PV Power System 

In the grid-connected PV systems, DC/AC inverters are the essential part to invert dc power 

out of PV cell to grid-compatible ac power. The current injected to the grid should be high quality 

sinusoidal waveforms synchronized with the utility grid voltage. Besides, the power injected into 

the grid is dependent upon the maximum power available from the PV panel side which varies with 

temperature and irradiance.  

Thus based on the inverter configuration differences, the grid-connected PV system can be 
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are connected in series firstly (or called strings) to generate a sufficiently high voltage and avoid 

further amplification, and then these series are connected in parallel through string diodes to 

obtain the desired high power level. This arrangement is the earliest configuration type as it offers 

economies of scale. Later on because of severe disadvantages, the usage of the centralized 

inverters decreases.[18, 24, 25]  

 Disadvantages in power losses: 

As illustrated in Figure 1.5 (a), series diodes are required for every parallel branch to ensure 

the power flow directions. However, these diodes increase the power losses and decrease the 

system efficiency. Moreover, the unequal power distribution and mismatching of maximum 

power points for PV panels increase power losses further. Because it is a centralized control, 

when it fails, all power from the solar installation is lost.  

 Disadvantages in cost: 

Due to the high DC voltage and high power, the installation and maintenance of the 

centralized type inverters is complex and expensive, requiring specialist skill and safety 

procedures. The high voltage DC cables between PV modules and the inverter also increases the 

cost. Moreover, the inflexible design of centralized inverter eliminates the possibility of mass 

production benefit in cost. The inverter is required to be located in a protected environment 

indoors because of the large power, which increases cost in initial system construction. 

 Disadvantages in other aspects: 

There are other disadvantages such as the inflexible design( which does not permit power 

level expandability); short life time (most manufacturers of these type inverters only warrant their 

products for 5 or 10 years); poor power quality (The grid-connected stage was usually line 

commutated by means of thyristors, involving many current harmonics) and so on.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. 5 PV inverter structures: (a) central type, (b) string type, (c) multi-string type, (d) 

module integrated type 
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To avoid the problems caused by centralized type inverters, string and multi-string inverters 

are proposed. Compared with centralized inverters, the string and multi-string type inverters do 

not require series diodes, which would save power losses. Moreover, the possibility of mass 

production of inverters enables a cost reduction. In string or multi-string inverters, since each 

string operates independently of each other, if one string fails, all power from the other strings 

can still feed into the grid.  

B. String type 

The string type as illustrated in Figure 1.5 (b), has several PV panels which are connected in 

series as a string. Each string is connected with a DC/AC converter, which allows the MPP of 

each PV string to be optimized, and the expanding of a PV system could be simply realized by 

inserting additional strings and inverters to the existing platform [18, 24, 25]. This type of 

inverter can be considered a reduced version of the centralized inverter. The voltage level can be 

high to avoid voltage amplification, or the voltage level can be low by involving a transformer or 

DC/DC converter to the inverters. Therefore the number of PV panels is more flexible to 

construct each string.   

C. Multi-string type 

For multi-string type as illustrated in Figure 1.5 (c), several PV panels are connected in 

series and then connected with a low power DC/DC converter as a string, while several DC/DC 

converters as multiple strings are connected together with one DC/AC converter.  

The multi-string type can be referred to as a variation of two-stage inverter string type, 

which can also realize optimal MPP of each string and flexibility with string design. The 

multi-string inverter combines the advantages of string inverter with the lower costs of 

centralized inverter. Although string type and multi-string type offer an improvement compared 

with centralized type, they still suffer from some disadvantages as high initial cost associated 

with acquisition and installation. 
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D. Module-integrated type 

The module integrated type  inverters illustrated as in Figure 1.5 (d) are also referred to as 

micro-inverters, and the power range is commonly between 150W and 300W. Each PV panel has 

a single inverter attached at the back. The output of micro-inverters are connected together to 

convert raw DC power from PV panel to AC power and provide power into the grid, thus no high 

voltage DC cable is required as centralized type inverters.  

Since micro-inverters can perform a dedicate PV power harvest for every single PV panel, 

the misleading problems caused by shading, dust, dirt, or other possible non-uniform changes in 

temperatures and irradiations are minimized compared with other types inverters. Moreover, 

micro-inverters have low voltage DC link, thus when failure cases take place, it is easy to replace 

or repair the broken part, and during this process, little affection will happen on the whole power 

generation system. These plug-N-play inverters are easily installed, simple in maintenance, and 

possible in mass production. [18, 24-26] Whereas they allow greater flexibility by allowing the 

use of panels with different specifications, different ratings, or produced by different 

manufacturer. This type of inverters would be the development trend of PV system design. 

1.2.2.2 Micro-Inverters 

For the micro-inverter applications, the inverter is put behind the PV panel with connection 

at the input side, and the output side is connected with the grid. Thus three functions should be 

realized simultaneously by the micro-inverter: 

 High gain voltage rising 

 DC/AC voltage inverting 

 MPPT 

There are various inverter topologies suitable for micro-inverter applications. Based on 

different consideration reference, the inverter topologies could be classified into different groups. 

For electrical ground consideration, the micro-inverter could be classified into galvanic isolation 
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and non-galvanic isolation. [27] Whereas based on the number of power processing stages, the 

micro-inverter could be classified into single-stage inverter, double-stage inverter, and three-stage 

inverter. 

A. Micro-inverters classified with isolation 

The galvanic isolation inverters implements transformer to achieve high voltage gain and 

provides doubly grounded for the source and the grid. Normally, low voltage rated switches are 

allowed for usage in the primary side. Several countries including U.S. have compulsory 

requirement of galvanic isolation. Due to the location of the transformers, the galvanic isolation 

inverters can be classified as grid line connection, transformer in DC/DC stage, and transformer 

in DC/AC stage. Due to the operation frequency, the galvanic isolation inverters can be classified 

as high frequency (HF) transformer inverters and low frequency (LF) transformer inverters. The 

individual types are illustrated in Figure 1.6.   

  
(a)                                        (b) 

  
(c)                                        (d) 

Figure 1. 6 Different isolation micro inverter structures (a) grid line connection (b) transformer in 

DC/DC stage (c) transformer in DC/AC inverter for single stage micro inverter (d) transformer in 

DC/AC stage for double stage micro inverter 
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1.6 (b)(c)(d). Various topologies with high frequency transformers have been proposed in the 

recent decades. With active semiconductors, high frequency voltage waveforms are generated at 

the input side of the transformer, and Rectifier Bridge is connected with the output side of the 

transformer to convert the high frequency waveforms into the DC waveform or line frequency 

waveform. Thus switching losses for the switches in the primary side and conduction losses in the 

secondary side are the main concern in the efficiency improvement consideration.  

As classical boost topology cannot provide high voltage gain considering the low efficiency, 

the non-galvanic isolation inverters implement magnetic methods or capacitive methods to 

increase voltage gain. In magnetic methods, coupled inductors are involved into the inverter 

topologies [23, 28]. As isolated inverters, the magnetic methods rely on turns ratio to raise 

voltage. Although they may achieve better efficiency due to single stage topologies, they use 

transformers but do not provide ground isolation. The capacitive methods can be realized by 

voltage multiplier stages [22, 28], or rely on a group of capacitors which could be charged as 

parallel connection with the source, and discharged as series connection with the load [28-30]. 

This kind of topologies do not require a transformer, thus less cost, and smaller size and weight 

could be achieved [22, 23, 28, 30]. However transient high charging or discharging current 

restrict the usage for safety consideration.  

B. Micro-inverter classified with power processing stages  

Based on the power conversion stages, the grid connected PV inverters can be classified into 

three groups: single-stage inverter, double-stage inverter, and three-stage inverter. 

For the single-stage inverters, MPPT, DC/AC power conversion, and voltage amplification 

should be realized in one power conversion stage, thus overall efficiency might be improved, 

especially when solar insolation is low. Moreover, size and components would be saved. The 

structure of single stage inverters is illustrated in Figure 1.7 (a). As three functions have to be 

realized on a single stage, the controller should be much more complicated [31, 32]. Several 
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single stage inverter topologies with suitable control schemes have been proposed in literatures 

[33]. Their applications as micro-inverters are still very limited, especially in the three-phase 

area.  

  
(a)                                    (b) 

 
(c) 

Figure 1. 7 Different power stage micro inverter structures: (a) single-stage (b) double-stage (c) 

three-stage 
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reliability compared with single-stage and double-stage inverters. However, it also has the worst 

efficiency because of these energy processing stages. 

1.2.2.3 The AC PV Module   

AC PV module refers to a PV panel integrated with a micro-inverter as illustrated in Figure 

1.8. The output of an AC PV module is AC power which could be directly connected with a utility 

grid. The concept was first proposed by Caltech's Jet Propulsion Laboratory [20, 21] in the1970s. 

From the 1990s with support from government, the technologies of AC module developed rapidly. 

With many advantages over central inverter systems and string inverter systems, the AC PV 

module is believed to be the future development trend of PV solar power systems. 

The advantages of AC PV modules are: 

 Low minimum system size to unlimited maximum system size 

The rated AC PV module could be as small as 100W or even less. Thus the minimum system 

could be as small as 100W or even less. With required power size increasing, more and more AC 

modules could be added into the existing system. As illustrated in Figure 1.9, the system size could 

be extended to any desired power range. So the AC PV module is suitable for both residential PV 

system and PV farm system. With the flexible system size, the AC PV module has great market 

potential. 

 Simple and flexible installation options 

Since the output of the AC module is AC power and no DC cable is accessible to users, the 

installation could be greatly simplified and easily performed by electricians. Moreover, the various 

parts of the PV panel do not need to match exactly with each other, so various manufacturers’ 

products could be selected. These characteristics could decrease installation cost greatly. 

 Enhanced safety 

Without high DC voltage accessible to the users, the AC modules are inherently safer than 

conventional centralized or string type PV systems. AC module wiring can be done with zero 
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voltage on all wires, terminals and switches until a connection is made to a circuit breaker in the 

service panel. 

 

Figure 1. 8 The AC PV module[38] 

 

Figure 1. 9 Grid-tie PV AC modules[38] 

 

1.2.2.4 AC Module Inverter Design Consideration 

Based on the previous analysis and discussion of the PV power generation systems, the AC 

module inverters with obvious advantages are selected to construct the PV system in this thesis. 

Since the performance of an AC module inverter is determined by factors including efficiency, 

reliability, isolation, and power density, these factors should be employed to direct the detail design 

of an AC module inverter. 
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A. Isolation 

In the United States the grounding of the PV source is required in PV installation, which is 

equivalent to the galvanic isolation requirement. As illustrated in Figure 1.6, the galvanic isolation 

is realized through a transformer.   

B. Efficiency 

The AC module efficiency is constructed by PV panel efficiency, MPPT efficiency and 

inverter conversion efficiency. The PV panel efficiency is determined by PV cell technology as 

discussed in section 1.2.1., where MPPT is the fundamental component for tracking the maximum 

power of PV panel continuously under changing environment (i.e. solar irradiance and 

temperature). The MPPT efficiency is evaluated with static and dynamic efficiency. The 

commercial inverter MPPT efficiency is larger than 98%. The inverter conversion efficiency is a 

weighed conversion efficiency that considers several operating conditions. [39, 40] The inverter 

conversion efficiency is the decisive factor from the investor point of view. 

C. Power density 

The power density is an important factor to decrease the inverter volume and cost. Since the 

AC module inverter is attached behind the PV panel as illustrated in Figure 1.8, the inverter 

volume is preferred to be small. 

D. Reliability 

Most commercial PV modules are guaranteed to perform at specified levels of output for 20 

to 25 years.[41] Integrating the inverter to the PV module necessitates that they both must have 

matched expected lifetimes so that the inverter should also have a lifetime for 20 to 25 years.  

Based on these above factors, a few restrictions could be given on the design of AC module 

inverters: 

 Compared with single-stage and three-stage inverters, the double-stage inverter structure 

should be selected because of better efficiency with high quality AC output.  
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 Soft switching is a technical method to improve the inverter conversion efficiency. The 

realization of soft switching is preferred not only because of efficiency improvement, but also 

because the possibility of improving switching frequency and power density. 

 Considering isolation requirement, as low frequency transformer is not only large but also 

power consuming, the high frequency transformer should be selected in the inverter design.  

 To improve the reliability, the capacitance of system is preferred to be the smaller, the better. 

1.3 Objectives and Outlines 

The main objectives of this thesis are to provide a specific analysis about a high efficiency 

module solar system architecture.   

The dissertation is divided into five chapters, which are organized as follows: 

Chapter one provides a background introduction of the PV system. The worldwide energy 

shortage status makes renewable energy applications extremely attractive. Among various 

renewable energy types, solar energy with the advantages of clean, inexhaustible, safe, and globally 

applicable is extremely suitable for large scale application. The PV system as the major 

implementation of solar energy can be divided into two parts: PV cells and power components. 

Both of them have been analyzed carefully, especially the power components part, which is the 

objective of this thesis. Based on the considerations from efficiency, power density, galvanic 

isolation and reliability, several restrictions are generated to guide the specific design of the AC 

module inverter.  

Chapter two provides the study of DC/DC stage. DC/DC stage performs an important role in 

converting DC power from PV panel side voltage to DC bus voltage required in the micro-inverter. 

Various topologies of DC/DC converter have been reviewed. Resonant topologies with soft 

switching are studied in detail when operating as DC/DC stage. LLC converter with advantages 

over other resonant converters is selected as DC/DC stage eventually.  
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A novel MPPT with fast tracking speed and little oscillation power loss is proposed to track 

the maximum power on LLC converter with frequency modulation. The feasibility of the proposed 

MPPT method is proved mathematically. Simulation and experiment results verify the theory 

analysis. 

Chapter three provides the study of DC/AC stage. A brief introduction is given on DC/AC 

inverter topologies. To improve the inverter efficiency, based on chapter one, the soft switching 

technique should be employed. Thus a review of the soft switching technologies on inverters is 

given. A proposed BCM inverter technique is analyzed in detail. A 150W inverter prototype was 

built and experiments were carried out on both full-bridge and half-bridge inverter topologies. 

Experimental waveforms verify the operation principle.  

To give a comparison with the proposed soft switching, ARCP on the same prototype as 

existing soft switching technique is performed. Experiment results demonstrate that the proposed 

control-realized soft switching has better efficiency with fewer components. 

Chapter four provides the complementary part of the module solar system architecture---the 

energy storage integrated with the micro-inverter/Utility interactive systems. To balance the 

intermittent and unpredictable nature of PV energy with fluctuating load, energy storage is required 

to be integrated with the existed PV system. The grid connection type energy storage, which 

requires least energy storage capacity, is preferred. The PFC converter is an important component 

to realize it. A biflyback PFC topology is studies in this chapter with a DSP controller. A new 

snubber cell is proposed to restrict the voltage stress and realize the soft switching. Simulation and 

experiment verify the analysis.  

Chapter five summarizes the whole thesis and describes the future work based on the existed 

experiments and analysis. 
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CHAPTER TWO: DC/DC CONVERTER STAGE  

In the double stage micro-inverter PV systems, the DC/DC converter performs an important 

role in converting DC power from PV panel side voltage to required DC bus voltage. There are 

several technical challenges that exist for the DC/DC converter: 

 PV panel is connected as the input source of the DC/DC converter, which has a wide input 

voltage range depending on the operating conditions of PV cell. Also the converter is required 

to regulate the constant output voltage. Generally the PV panel voltage is about 20~50V, while 

the DC bus voltage is around 400V.  Thus a large voltage rising function is required. 

 As a renewable energy, the PV source is continually affected by environmental factors such as 

irradiance and temperature. Thus the output power of the PV panel can vary significantly in a 

day, which requires the DC/DC converter to operate in a large power range. 

 Increasing power density is another requirement for the DC/DC converter, which would 

decrease the micro-inverter volume and be convenient for the module-integrated structure 

design. Thus cost of installation and transportation would be reduced. 

 In addition, a high efficiency is required to increase the micro-inverter efficiency under 

operational conditions. 

To deal with all these technical requirements, much literature focusing on DC/DC converters 

has been published.[42-45] 

2.1 Analysis to Resonant Topologies 

Classified by the operation differences, the DC/DC converter can be divided into two parts: 

pulse width modulation (PWM) converters and resonant converters. PWM DC/DC converters refer 

to conventional converters with pulse width modulation regulating current or voltage, whereas 

resonant DC/DC converters refer to the converters with controlling energy cycling in L-C resonant 

tanks to process the power conversion. 
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Considering the galvanic isolation, a transformer is usually adopted in the DC/DC converters. 

Both pulse width modulation (PWM) converters and resonant converters are practicable to adopt 

the isolation transformer. 

For the PWM converters, the leakage inductance of the transformer would add voltage stress 

and increase switching power losses to the main switches. Moreover, the hard switching increases 

electromagnetic interference (EMI) and restriction on high switching frequency. However, the 

resonant converters, with the advantages below are suitable for the application as the intermediate 

stage between the PV generator and the inverter in PV systems. 

 Reduced switching losses due to soft-switching operation in all the switches. 

 Reduced size due to high switching frequency capability of the resonant nature of the circuit. 

 No adverse effect of voltage stresses on devices due to leakage inductance since it forms part 

of resonant circuit. 

However the performance of resonant converter depends upon not only circuit parameters, but 

also control techniques, which is difficult to determine with output power and input voltage 

variance. That is one of the reasons why PWM converters are broadly utilized with duty cycle 

control in the realization of PV micro-inverters. 

There are various control methods for the resonant converters. For example, frequency 

modulation, phase shift modulation, skipping pulses modulation, hybrid bridge control, etc. 

Among all these control methods, the variable frequency control is the most conventional for 

application.[46-49]  

In the variable frequency control, the duty cycle is usually maintained at 50%. With frequency 

modulation, circulating energy in the LC tank is manageable; therefore output power is controllable 

with the desired output voltage.  
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2.1.1 Introduction of Resonant Topologies 

 

Figure 2. 1 General scheme of a resonant converter 

 

There are various resonant converters whose topologies can generally be illustrated in Figure 

2.1, where a half or full bridge is connected with DC source to generate a square voltage excitation 

to the resonant network. Then a resonant network is provided for circulation and delivery of power, 

where a transformer is provided for galvanic isolation. Sometimes the primary inductor of the 

transformer operates as part of the resonant tank. At the other end, a rectifier constructed with 

diodes is cascaded to convert the squire voltage into DC output voltage. 

Based on the resonant network complexity, the most commonly known resonant converter 

topologies could be classified into three groups:  

 Second order resonant converter 

For example: Series resonant converter (SRC) and parallel resonant converter (PRC) 

 Third order resonant converter 

For example: series-parallel resonant converter LCC (or SPRC), LLC resonant converter 

 Fourth order resonant converter 

For example: LCLC resonant converter 

All of the topologies are analyzed individually as follows with frequency as the control parameter. 
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2.1.2 Frequency Modulation of Resonant Topologies 

2.1.2.1 Second Order Resonant Converter 

A. SRC 

The topology of a series resonant converter (SRC) is illustrated as in Figure 2.2 (a). The 

resonant tank is constructed with a capacitor Cs and an inductor Ls connected in series as illustrated 

in Figure 2.2 (b), where the Req refers to the equivalent impedance of the output load resistance 

observing from the primary side of the transformer. 

L
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Figure 2. 2 SRC topology: (a) input full bridge output half bridge circuit (b) resonant tank 
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Because of the 0.5 constant duty cycle, the input of a resonant tank is a square-wave voltage 

generated by the full bridge: 
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The input impedance at the resonant input side: 
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Thus classical ac-circuit analysis can be applied for each harmonic component.  
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And the voltage gain M can be met with equation (2.7). 
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Based on expression (2.5), the frequency-gain curves for different load could be drawn as in 

Figure 2.3, where Pn refers to rated power for the SRC converter. 

 
Figure 2. 3 normalized Gain vs frequency waveforms under various loads for SRC 

 

It is obvious to observe from Figure 2.3 that when switching frequency is moving away from 

the resonant frequency in the inductive zone, the normalized voltage gain (Mn=M/2n) drops quickly, 

especially when load increases. For example, for the full load curve illustrated in Figure 2.3, the 

gain drops five times (from 1 to 0.2) when switching frequency drops only 15% (from 1 to 1.15). 

Thus the frequency modulation for this frequency section is much more sensitive than for the other 

sections. 
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resonant tank is constructed with a capacitor Cs and an inductor Ls connected in parallel as 

illustrated in Figure 2.4 (b), where the Req refers to the equivalent impedance of the output load 

resistance observing from the primary side of the transformer. And the expression for Req is the 

same as (2.1). 

 
(a) 

 
(b) 

Figure 2. 4 PRC topology: (a) input full bridge output half bridge circuit (b) resonant tank 
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The input impedance observed from the full bridge side is: 
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To make sure that the resonant link is not capacitive, the imaginary part of (2.9) should be 

positive. Thus (2.10) could be solved as requirement for inductive load. 
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Figure 2. 5 Normalized Gain vs frequency waveforms under various loads for PRC 

 

To implement the frequency analysis as in SRC part, the voltage gain for each harmonic 

sinusoid voltage can be calculated by (2.11), while the overall voltage gain could be calculated by 

(2.2).  

0.5 0.75 1 1.25 1.5 1.75 2
0

1

2

3

4

5

6
Mn

fn

inductive zone

0.2Pn

0.4Pn

0.6Pn

0.8Pn

Pn

capacitive 

zone



27 

 

22
n

2
eq

2
n

2
cs

eq
k

)]fk-(1R[)(kfZ

R

k

2n
M




 

(2.11) 

The frequency-gain waveforms under various load conditions are drawn out as in Figure 2.5 

with boundary line provided to separate inductive zone with capacitive. 

Observing from Figure 2.5, the normalized gain value in inductive zone can be larger or 

smaller than 1, which allows the converter to operate in a wider gain range compared with SRC 

converter. For lighter load conditions, the slope is much steeper than the heavier load condition 

when normalized switching frequency is in range [1, 1.25], which is also the range for Mn>1. 

2.1.2.2 Third Order Resonant Converter 

A. LCC 

The topology of LCC resonant converter is illustrated as in Figure 2.6 (a). The resonant tank is 

illustrated in Figure 2.6(b), a capacitor is connected with an inductor and another capacitor is in 

series. The Req refers to the equivalent impedance of the output load.  

 
(a) 

 
(b) 

Figure 2. 6 LCC topology: (a) input full bridge output half bridge circuit (b) resonant tank 
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The resonant tank is constructed by a series load (Zs) and a parallel load (Zp). They can be 

expressed individually as follows: 
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The input impedance observed from the full bridge side is: 
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 , and (2.16) is a sufficient condition to make sure that Zin is 

inductive. 
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The solution (2.16) is varied with the output load. Figure 2.7 illustrates the frequency-gain 
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waveforms under various load conditions. The green section in Figure 2.7 is the inductive zone 

while the red region is the capacitive zone calculated from (2.16).  

 
Figure 2. 7 Normalized Gain vs frequency waveforms under various loads for LCC 

 

Observing from Figure 2.7, inside the inductive zone, the smaller the frequency, the larger the 

normalized gainis. For a lighter load condition, the voltage gain VS frequency slope is much 

steeper than the heavier load condition when the normalized switching frequency is less than 1.25. 

When the normalized switching frequency is larger than 1.25, with frequency increasing, the 

voltage gain decreases slowly and approach together under various load.  

B.LLC 

The topology of LLC resonant converter is illustrated as in Figure 2.8 (a). The resonant tank is 
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connected in series as illustrated in Figure 2.8 (b), where the Req refers to the equivalent impedance 
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(a) 

 
(b) 

Figure 2. 8 LLC topology: (a) full bridge circuit (b) resonant tank  

 

The resonant tank is constructed by a series load (Zs) and a parallel load (Zp), and they can be 

expressed individually as follows: 
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The voltage gain for every harmonic component of the LLC converter can be calculated with 

equation (2.19) 
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refers to the equivalent load resistance at the primary side of the transformer, and n refers to the 

turns ratio of the transformer.  

The input impedance observed from the full bridge side is: 

)
f

L

f
CL

L
R

LR
j(L

f
CL

L
R

Rf
CL

L

Z
2

n

s

2
n

ss

2
p2

eq

p
2

eq
s

2
n

ss

2
p2

eq

eq
2

n

ss

2
p

in 









 

(2.20) 

To make sure that the resonant link is inductive, the imaginary part of (2.20) should be positive. 

Thus the frequency requirement of soft switching could be calculated as (2.21). 
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The boundary line of inductive and conductive zones is illustrated as in Figure 2.9, where 

normalized gain vs frequency waveforms under various loads for LLC converter are drawn out.  

Observing from Figure 2.9, inside the inductive zone, when the normalized switching 

frequency is lower than 1, the smaller the frequency, the larger the normalized gainis. When the 

normalized switching frequency is larger than 1, with frequency increasing, the voltage gain 

decreases very slowly. For lighter load conditions, the voltage gain VS frequency slope is much 

steeper than the heavier load condition. 
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Figure 2. 9 Normalized Gain vs frequency waveforms under various load for LLC converter 

 

2.1.2.3 Fourth Order Resonant Converter 

A. SPRC (LCLC) 
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The topology of the LCLC converter is illustrated in Figure 2.10 (a). The Figure 2.10 (b) shows the 

simplified resonant tank of the LCLC converter, where the Req refers to the equivalent impedance 

of the output load.  
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(a) 

 

(b) 

Figure 2. 10 LCLC topology: (a) full bridge circuit (b) resonant tank 
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To make sure that the resonant link is not capacitive, (2.26) should be satisfied. 
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0bd)da(c 22   (2.26) 

To simplify the derivation, assume , (2.27) could be induced from (2.26) 
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Figure 2. 11 Normalized Gain vs frequency waveforms under various load for LCLC 

 

The solution (2.27) is varied with the output load. Figure 2.11 illustrates the frequency-gain 

waveforms under various load conditions. The green sections in Figure 2.11 are the inductive zone 

while the red regions are the capacitive zone calculated from (2.27).  

It is obvious to observe from Figure 2.11 that both the upper and lower resonant frequencies 

are changing with load.  Fortunately they do not change as much as LLC. Based on Figure 2.11, an 
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2.1.3 Operation of Resonant Topologies Connected with PV Panel 

In the two-stage micro-inverter, the output of DC/DC stage is connected as the input of 

DC/AC stage. Conventionally, to promise the stable operation of the DC/AC inverter, the bus 

voltage is required to be a constant value Vref, which is expressed as  

refo VV   (2.28) 

Considering the power balance, 

orefooinin IVIVIV   (2.29) 

In the two-stage micro-inverter system, the input side of resonant converter is connected with 

a PV panel. 

 

Figure 2. 12 Equivalent circuit of a PV panel 

 

The equivalent circuit of a PV panel is illustrated in Figure 2.12, and the input current and 

input voltage follows the equation (2.24). 
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(2.30) 

In (2.30), five parameters IL, ID, a, Rs, and Rsh could be calculated by the short circuit current Isc, 

open circuit voltage Voc, MPP current Imp, and MPP voltage Vmp. As Isc, Voc, Imp and Vmp are 

various with different irradiances and temperatures, the curves of Vin VS Iin could be drawn out 

based on equation (2.30).  

Combined equations (2.28), (2.29) with characteristic equations of resonant converters 

together, input current VS input voltage waveforms could be generated and drawn out individually.  

IL

Iin

Rs

Rsh
Vin

ID
Ish



36 

 

To observe the operation points of PV panel connected resonant converter, characteristic 

waveforms of PV panel under different irradiances could be drawn out based on equation (2.30). 

The joint points of these curves with the former relationship curves illustrate the expected operation 

points of these resonant converters connected with PV panel.  

All of the commonly used resonant converter topologies are analyzed individually as PV 

panel connected DC/DC stage of micro-inverters. Waveforms are drawn and illustrated as follow. 

2.1.3.1 Second Order Resonant Converter 

A. SRC 

Based on equations (2.1), (2.6), (2.7), (2.28), (2.29), 3D relationship of input voltage, input 

current and normalized switching frequency could be calculated and drawn in Figure 2.13. 

The characteristic waveforms of PV panel are drawn with waveforms of SRC as illustrated in 

Figure 2.14. The operation joint points illustrate the expected operation points of this converter 

connected with PV panel.  

To simulate the operation of SRC converter as the first stage of a micro-inverter, the system 

parameters are assumed as: Vref=400V, n=25;Cs=1.17uF; Ls=6uH; thus resonant frequency 

fo=60.1kHz. 

It is obviously to observe from Figure 2.14 that, 

 For one V-I curve, one switching frequency relates to only one set of Vin and Iin. With 

frequency increasing, Vin increases and Iin decreases. 

 The operation point of PV panel changes much more with frequency in range [1.1 1.2] than in 

other frequency ranges.  

 When the normalized switching frequency is over 1.2, the PV current is approximated fixed 

with fixed frequency under various irradiances. 

 When the normalized switching frequency is less than 1.1, the PV voltage is approximated 

fixed with fixed frequency under various irradiances. 
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Figure 2. 13 SRC converter 3D relationship of input voltage, input current and normalized 

switching frequency based on Vo=Vref 

 
Figure 2. 14 V-I curves under various irradiances for SRC converter 

 

Thus if a frequency modulation MPPT is required for the SRC converter here, it requires three 
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applied as the output side, n=50) for voltage gain , which would add power losses 

and transformer volume for the converter. Thus the SRC converter is not suitable to be applied as 

the DC/DC stage between PV panel and DC/AC stage. 

B. PRC 

With the same progress, the 3D relationship of input voltage, input current and normalized 

switching frequency could be calculated and drawn in Figure 2.15.  

To illustrate the operation of PRC converter as the first stage of a micro-inverter, the system 

parameters are assumed as: Vref=400V, n=5.5;Cp=1uF; Ls=5uH; resonant frequency fo=71.2kHz. 

In Figure 2.16, the voltage-current curve of PV panel is the same as in SRC analyses. The joint 

points of PRC curves with the PV curves illustrate the expected operation points of this PRC 

converter connected with PV panel. 

 

 
Figure 2. 15 PRC converter 3D relationship of input voltage, input current and normalized 

switching frequency based on Vo=Vref  
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Figure 2. 16 V-I curves under various irradiances for PRC converter 

 

Based on the observation of Figure 2.16, characteristics can be obtained as follow: 

 The appropriate operation frequency range for MPP searching is narrow. 

 

Thus PRC parameters should be carefully designed to determine the frequency searching range. 
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frequency increasing, Vin increases and Iin decreases.  

 With the frequency increasing, the moving speeds on all PV panel's VI curve are 

approximately stable. 

 Because the SRC VI curves bend more with the power increasing, and the voltage of MPPs 

change little with irradiance variance, the higher irradiance condition has a smaller frequency 

for MPP. 

Due to the complex interaction between the PRC resonant components, the relationship 

between Vin and fn is nonlinear and non-explicit. Moreover, the nonlinearity in PV module 
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power curves as in Figure 2.17.  

 
Figure 2. 17 Simulation P-F curves of PRC micro-inverter connected with PV panel 

 

The simulation is built with MATLAB simulink. Figure 2.17 shows that with the irradiance 

decreasing, the switching frequency for MPP is increasing, which is the same as former the analysis 

with equations' calculation.  
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Figure 2. 18 LCC converter 3D relationship of input voltage, input current and normalized 

switching frequency based on Vo=Vref 

 

Figure 2.18 illustrates the 3D relationship of input voltage and input current under various 

switching frequency based on the condition required for two stage inverter Vo=Vref. It is obvious to 

observe from Figure 2.18 that with switching frequency increasing, voltage increases while current 

decreases. And when switching frequency is resonant frequency, the current is almost constant. 

Figure 2.19 illustrates the characteristics of PV array and LCC converter, thus the joint points 

are the operation points of the LCC converter applied as the first stage of the micro-inverter. 

Based on the observation of Figure 2.19, LCC characteristics can be obtained as follow: 
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Figure 2. 19 V-I curves under various irradiances for LCC converter 

 

 For the same switching frequency, with the power increasing, the slope of VI curve is 

decreasing, which means that with the irradiance changing, the frequency for MPPs changes a 

lot. 
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Figure 2. 20 Simulation P-F curves of LCC micro-inverter connected with PV panel  

 

B. LLC 

Based on power balance and two stage inverter requirement Vo=Vref, the relationship of input 

voltage, input current and normalized switching frequency could be calculated and waveforms 

could be drawn in Figure 2.21. 

 
Figure 2. 21 LLC converter 3D relationship of input voltage, input current and normalized 

switching frequency based on Vo=Vref 
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(a) 

 
(b) 

 
(c) 

Figure 2. 22 V-I curves of a PV panel and LLC converter under various switching frequency: (a) 

 (b)  (c) Inductive zone 
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Figure 2.21 illustrates that when fn=1, Vin is kept constant regardless of the input current value, 

otherwise the slope of VI curve is keep changing. 

As illustrated in Figure 2.21, with the load increasing, the boundary frequency for inductive 

zone increasing and changing range is very large. As the MPPT progress, the load is always 

changing. To keep the LLC operating under inductive load, there are two ways:  

 Use the worst boundary which takes place at full load. 

 Calculate the boundaries for various loads and adjust the boundaries simultaneously with 

load. 

To solve the boundary selection problem, VI curves of PV panel and LLC converter are drawn 

out as in Figure 2.22. To promise the successful MPPT of this micro-inverter, the LLC parameters 

should be carefully designed to make sure that the joint points of LLC curves and PV curves 

include the MPPs. 

In Figure 2.22 (a), with the fn increasing, the frequency curves become closer to each other, 

which means that the higher the frequency, the less difference in power, especially when input 

current is small (less than 2A). If the worst boundary is applied, the PV panel curve section that 

could be covered is very narrow, which is not good for MPPT under various condition. 

 
Figure 2. 23P-F curves of LLC micro-inverter connected with PV panel under various irradiances 
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Figure 2.22 (b) illustrates when frequency is increased much more than resonant frequency, 

the frequency lines bend and cover more section again. Thus in limited conditions, well designed 

LLC can also adopt the worst boundary as boundary for the whole MPPT progress. 

Figure 2.22 (c), the different loads with their boundary frequencies are provided, thus the 

inductive zone can be drawn out. It is obvious to observe from Figure 2.22 (c) that with the 

frequency decreasing less than 1, the VI curves of LLC bend more and more thus it cannot enter 

larger power section provided by the PV curves. Thus another constant boundary which is much 

smaller than the worst boundary can be selected here. 

Simulation based on the same set of parameters as previous calculations of the LLC 

micro-inverter is built with MATLAB simulink. And P-F curves of LLC micro-inverter connected 

with PV panel under various irradiances are illustrated in Figure 2.23.  

The initial operation of the LLC micro-inverter begins from the high frequency side for a soft 

start. If a conventional P&O or INC method is applied here, the MPPT would fail immediately as 

little power difference observed at 280kHz as illustrated in Figure 2.23.  

2.1.3.3 Fourth Order Resonant Converter 

A. SPRC (LCLC) 

It can be observed from Figure 2.24 that, with the switching frequency increasing, the V_I 

curves intend to “bend” with increasing power, which means faster increasing in voltage while 

slower increasing in current. 

Figure 2.25 illustrates the characteristics of PV array and LCLC converter, thus the joint 

points are the operation points of the LCLC converter applied as the first stage of the 

micro-inverter. 

Based on the observation of Figure 2.25, characteristics can be obtained as follow: 
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Figure 2. 24 LCLC converter 3D relationship of input voltage, input current and normalized 

switching frequency based on Vo=Vref 

 
Figure 2. 25 V-I curves under various irradiances for LCLC converter 
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 VI curves bend with the power increasing. The curvature of the bend is not as much as 

illustrated in Figure 2.16. Thus the MPP voltage does not change as much as PRC converter 

when irradiance changes, which means that the bus capacitor would have a less impulse in 

voltage when irradiance suddenly changes. Thus LCLC converter is more suitable than PRC 

converter in frequency modulated MPPT application. 

 
Figure 2. 26 Simulation P-F curves of LCLC micro-inverter connected with PV panel 
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2.1.4 The Reason for Selecting LLC as DC/DC Converter Stage 

Among all the commonly known resonant converters with advantages in high efficiency and 

low noise, they have some disadvantages compared with LLC converters which limit their 

applications. 

For the second order resonant converters as SRC and PRC, although they have the simplest 

resonant converters with minimum components, the SRC converter cannot regulate output voltage 

under unloaded condition. Moreover, ZVS would be lost under a light load condition, whereas the 

PRC converter has an efficiency changing obviously with load. LCC converter is the third order 

resonant converter as same complexity as LLC converter, however it suffers from an efficiency 

changing as input voltage varies.  

Fourth order resonant converters have two major drawbacks: 1) complicated analysis 2) the 

additional reactive elements affect its size, weight and efficiency. 

Thus LLC resonant converter becomes increasing important with additional benefits 

compared with other resonant converters. The advantages of the LLC resonant topology are: 

[50-52] 

 The leakage inductor and magnetic inductor of transformer can serve as components to build 

the resonant tank, which would help with reducing the overall volume of the LLC resonant 

converter. 

 Soft-switching condition could be realized for the entire load range (from no-load to full-load), 

thus switching loss is very low. 

 The LLC converter is easy to design with a wide range of input voltage levels and the 
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efficiency is kept high.  

 There are low voltage stress and zero current switching (ZCS) on the secondary rectifier 

output voltage. No secondary filter inductor means low voltage stress on the rectifier diode. In 

addition, ZCS of the secondary diode removes its reverse recovery problem. 

Thus LLC topology is selected here to perform as the first stage converter in the 

micro-inverter design.  

2.2 MPPT Control for Resonant Topologies 

The PV cell is a time variant power generator. The variance can be caused by irradiance and 

temperature difference. Thus the maximum power point (MPP) of the PV panel is always changing 

as illustrated in Figure 2.27. Therefore, an efficient maximum power point tracking (MPPT) 

technique is very important to track the maximum solar power continuously under various 

environmental conditions.  

 
Figure 2. 27 PV panel power with changing environment 
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2.2.1 Introduction of MPPT Technologies 

Since 1960s, when the MPPT was first proposed; the study of MPPT has become an important 

technical area for PV generator systems. Especially with the application of digital signal processor 

(DSP), many MPPT algorithms have been proposed and practiced in the recent decades. Generally 

speaking, the MPPT algorithms can be classified into four groups: direct calculation methods, 

intelligent methods, incremental conductance (INC) methods, and perturb and observe (P&O) 

methods. 

Direct calculation methods adopt approximation methods to simplify the MPP determination 

process [53-56]. For example, [54]assumes a linear relationship between VMPP and VOC of the PV 

panel; [55]assumes a linear relationship between IMPP and ISC; while [53] assume a polynomial 

relationship between PV power and voltage. This type of MPPTs deals with the PV panel 

parameters directly and requires no tracking iteration process. However, linear approximations 

[54, 55] have a low accuracy at MPP, while polynomial approximations [53, 56] require a complex 

calculation periodically. 

Intelligent methods depend on expert knowledge obtained from a large database [57, 58]. 

Although they can perform effective MPPT, the panel dependent and time consuming data 

training processes are unavoidable. This type of MPPTs is not suitable for the frequency 

modulated LLC converter because the complicated relationship of voltage gain versus frequency 

would make the fuzzy logic and neural network much more complicated than for PWM 

converters. 

Incremental conductance (INC) algorithms are based on the fact that the slope of the P-V (or 

P-I) curve is zero at the MPP [27, 59, 60]. Similar to P&O algorithms, an iteration step size is 

maintained while adjusting the control parameter until the MPP is achieved. The only difference is 

that P&O methods directly compare P to determine whether MPP has been achieved or not, while 

INC methods indirectly compare dP/dV (or dP/dI). INC methods are as efficient as P&O methods 
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but also suffer the same drawbacks. 

P&O methods are the most widely used MPPT because of their simplicity and effectiveness. 

When a perturbation is applied to the control parameter, PV power is measured and compared with 

the previous measured PV power. If the power increases, the same perturbation is applied to get the 

next PV power, otherwise an opposite perturbation is made. By this process, the operating point of 

the system gradually moves towards the MPP and oscillates around it in steady-state conditions. 

For a conventional P&O method, the perturbation is fixed. If the perturbation is large, the steady 

state oscillation around MPP would increase, which would increase power losses. If the 

perturbation is small, the MPPT speed would decrease, which would prolong tracking time. Thus 

an appropriate perturbation is required to balance the steady state accuracy and dynamic behavior 

with various irradiations and loads. To improve the performance, variable perturbs P&O methods 

are utilized [61-64]. They can operate the MPPT with a big step-size for a fast tracking speed at 

start and with a small step-size for an accurate MPP close to the steady state. However, in variable 

step MPPT [61-64], perturbs are adjusted directly to the duty cycle, which has a simple relationship 

with the input voltage (or current). When MPPT is used in a resonant topology with frequency 

modulation which has inexplicit relationship with input voltage (or current), existing variable step 

P&Os could not be employed directly. Only fixed step P&Os are applied on the frequency 

modulation resonant converters [49, 65], which would increase MPPT tracking time and power 

losses. 

2.2.2 Proposed Center Points Iteration MPPT 

A Center Points Iteration MPPT method is proposed in this chapter. It can be implemented in 

resonant converters with a variable step. The advantages of the proposed MPPT are as follows: 

 Directly adjust frequency for resonant converter. 

 Variable perturb value during tracking progress and no oscillation under steady-state. 
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 Simple calculation, easy application, and fast tracking speed. 

 Independent of initial environment parameters. 

 Inherently deal with a part of multi-peaks power curves. 

The proposed method divides the full range of the control parameter into four non-overlapped 

intervals with three center points. PV powers of the three points are measured and compared. Two 

of the four intervals are selected as the possible MPP existing intervals, and the other two are not. 

These existing intervals are then divided into another four intervals for the next power comparisons. 

The iteration is continued until the MPP is achieved. An Advanced Center Points Iteration MPPT 

has been derived based on this theory. The advanced version has faster MPPT and smoother 

tracking progress, which will reduce the power losses. The proposed MPPT is implemented in a 

two stage micro-inverter with a LLC resonant converter as the first stage. Simulation and 

experimental results demonstrate the effectiveness of the proposed MPPT method. 

2.2.2.1 Verification of Proposed MPPT 

Consider the problem of searching the global maximum of a function P(f) in a closed interval 

[f1,f2]. Assume that the maximum is achieved by P(fm), ]f,[ff 21m , and the function P(f) satisfies 

the requirements: 

]f,[ff,f m1ba  , )P(f)P(fff baba   

]f,[ff,f 2mba  , )P(f)P(fff baba   

Divide the interval into fourths by three center-points: 
2

ff
f

21
3


 , 

2

ff
f

31
4


 , and 

2

ff
f

32
5


 . The fm has four possible positions: 

① ]f,[ff 41m  )P(f)P(f)P(f
fff
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534

2m534
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Once P(f3), P(f4) and P(f5) are measured, the results with the aforementioned possible 

positions are compared: 

If )P(f)P(f 43  , )P(f)P(f 53  , ③ and ④ are the possible intervals for the maximum value, 

and [f4,f5] is selected as the next iteration interval. 

If )P(f)P(f 34  , )P(f)P(f 54  , ① and ③ are the possible intervals for the maximum value, 

and [f1,f3] is selected as the next iteration interval. 

If )P(f)P(f 35  , )P(f)P(f 45  , ② and ④ are the possible intervals for the maximum value, 

and [f3,f2] is selected as the next iteration interval. 

Once the maximum function value of the three center points is obtained, the next iteration 

would start the local search. If iterations are continued, the interval would converge at the global 

maximum point.  

Based on the above derivation, a MPPT technique could be generated. Any PV power function 

that satisfies the pre-set requirements would be compatible with the proposed MPPT method. For 

example, all of the power curves illustrated in Figure 2.28 are suitable for application of the 

proposed MPPT. 
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Figure 2. 28 Power curves suitable for Center Points Iteration MPPT 

 

2.2.2.2 Implementation of Proposed MPPT on LLC Converter 

A. Central points iteration MPPT control 

The flowchart of the proposed MPPT technique is illustrated as Figure 2.29(b)(c). The control 

parameter is the switching frequency. As shown in Figure 2.29 (a), the whole frequency region is 

first divided into 4 parts: part 1: F(1)~F(4), part 2: F(4)~F(3), part 3: F(3)~F(5), part 4: 

F(5)~F(2).Considering the inductive zone of LLC converter as illustrated in Figure 2.22(c), the 

initial boundary frequencies are set as: F(1)=0.5Fr, F(2)=2Fr, where Fr refers to the LLC resonant 

frequency and can be calculated by 
rr
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CL2π
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As illustrated in Figure 2.29 (b), (2.31) is used to determine whether the LLC converter has 

started operation yet.  

ξIn   (2.31) 

Threshold  is used to determine if the initial MPPT has been finished or not. The value of  is 

based on the PV panel current measured at start point 2Fr, which is usually very small as illustrated 

in Figure 2.23. If (2.31) is 'false', LLC converter has not started yet, thus the initialization begins 

immediately.    
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(a)                                              (b) 

 

(c)                                

Figure 2. 29 Application of the proposed MPPT on the LLC micro-inverter: (a)Proposed MPPT 

iterations (b)Overall flowchart of MPPT (c)Detail flowchart of the proposed MPPT  
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As illustrated by Figure 2.29 (c), powers P3, P4 and P5 are measured specifically at 

frequencies F(3), F(4) and F(5).  

If the maximum power is P3, the searching range can be reduced by reassignment: 

F(4)F(1)  , F(5)F(2)  , F(3)F(3)  . 

If the maximum power is P5, the searching range can be reduced by reassignment: 

F(3)F(1)  , F(2)F(2)  , F(5)F(3)  . 

If the maximum power is P4, the searching range can be reduced by reassignment: 

F(1)F(1)  , F(3)F(2)  , F(4)F(3)  . 

The next iteration dividing center points are calculated by: 

2

F(1)F(3)
F(4)


 , 

2

F(3)F(2)
F(5)


  

The interval is divided into 4 parts again for the next power comparisons. Keep doing the 

iterations until the boundary frequencies are close enough to reach the MPP criterion:  

e P5)P4,(P3,PP5)P4,(P3,P minmax  (2.32) 

The threshold ε determines whether the MPP has been reached or not. The value is based on 

the current and voltage sensing accuracy. In this paper it is selected to be 0.5%Pn.  

After the MPP is achieved, the MPPT is stopped and the PV current Iin is monitored.  

s inI  (2.33) 

Threshold s is used to determine if the irradiation has been changed. When the irradiation 

condition changed, the PV output voltage would change slowly due to the capacitor Cin, leading 

the current to increase (or decrease) significantly beyond the limit s. The value is also based on 

the input current sensing accuracy. 

If (2.33) is observed 'true', the MPP may move and the new tracking progress should start 

again. The small value s decides the sensitivity of the system to the environment variance. 

Although environment temperature may change Vmp in a large scale, because of the relatively high 
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thermal inertia of PV array, the progress cannot complete in a few seconds. Moreover irradiance 

cannot change Vmp in large scale, thus the new MPPT does not need to restart from the initial 

interval again. As illustrated in Figure 2.29(b), searching around Fmax0.2Fr is tested enough. (Fmax 

refers to the last maximum power frequency) This would speed up the new MPPT progress. 

F

P

Fn(1) Fn(2)Fn(3)Fn(4) Fn(5)
Fn+1(3)

Fn+1(4) Fn+1(5)

Pn(5)

Pn(4)

Pn(3)

 
(a) 

 
(b) 

Figure 2. 30 Advanced Center Points Iteration MPPT control: (a) MPPT iterations (b) Flowchart  
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the DC-link voltage. Although the impulses are non-avoidable, their magnitudes could be reduced 

as much as possible. In this paper, three approaches are applied to reduce the impulse: 

 As illustrated in Figure 2.29 (a), the frequency is searching back and forth to ensure the 

perturbations are as small as possible. 

 At the beginning, the frequency perturbations are huge. A buffer zone can be provided to 

smooth impulses caused by the huge perturbations. In the buffer zone, the frequency is 

changing at an acceptable small step until it reaches the expected value.  

B. Advanced Center Points Iteration MPPT control 

To accelerate the MPPT speed in advance, additional criterions can be included to shrink the 

possible maximum power existing intervals. This is referred to as Advanced Center Points 

Iteration MPPT control in this paper. The Advanced Center Points Iteration is illustrated in Figure 

2.30.  

The logic of the Advanced Center Points Iteration MPPT can be expressed simply as:  

If an increasing or decreasing power trend is observed (for example in Figure 2.30(a), 

Pn(4)>Pn(3)>Pn(5)), we guess that this trend would be kept for the next testing point (Fn+1(5)). If the 

measured power verified this guess (if Pn+1(5)>Pn(3)), keep guessing that the trend would be kept 

for next testing point (Fn+1(4)) as well. Otherwise, return to do the regular Center Points Iteration 

MPPT in local range (between Fn+1(5) and Fn(3)). Because the range can shrink based on the test 

result, the advanced version would accelerate the tracking speed. 

 Pn(4)>Pn(3)>Pn(5)  

When Pn(4)>Pn(3)>Pn(5) is observed, the PV power shows an increasing trend with the 

frequency decreasing. To figure out where the power increasing trend would end, switching 

frequencies  

(1))/4F(4)(3F(5)F 1n1n1n   , (1))/2F(4)(F(3)F 1n1n1n   ,

(1))/43F(4)(F(4)F 1n1n1n    
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can be tested one by one to observe where the power begins to decrease.  

If (4)P(5)P n1n  , which means the power increasing trend ending before Fn+1(5), the 

possible maximum power interval can be reduced to [Fn+1(5), Fn(3)].  

If 












(4)P(5)P

(5)P(3)P

n1n

1n1n

, which means the trend ending before Fn+1(3), the possible maximum 

power interval can be reduced to [Fn+1(3), Fn(4)].  

If 





















(4)P(5)P

(5)P(3)P

(3)P(4)P

n1n

1n1n

1n1n

, which means the trend ending before Fn+1(4), the possible maximum 

power interval can be reduced to [Fn+1(4), Fn+1(5)].  

If no ends are observed in Fn+1 iteration, new test of Fn+2 iteration would start to shrink the 

interval in advance.  

 Pn(4)<Pn(3)<Pn(5)   

If Pn(4)<Pn(3)<Pn(5), the progress is similar with the former one to determine where the 

power increasing trend ends with the frequency increasing. 

 Otherwise 

No acceleration could be provided. 

The Advanced Center Points Iteration MPPT increases complexity, however it approaches 

the MPP faster and can return to the normal Center Points Iteration MPPT operation if not required. 

With the Advanced Center Points Iteration MPPT applied, the longest tracking time takes place 

when the MPP is at the center frequency of the initial boundaries. Since no trend was observed in 

the process, the Advanced Center Points Iteration MPPT would default to normal Center Points 

Iteration MPPT operation. 

C. Partial shaded application 

When the PV panel is operating in a partial shaded condition, the P-V characteristic is more 
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complicated than uniform isolations, which would generate multi-peaks on the power curve. Only 

one of the peaks is the global maximum power point which should be tracked, the others are local 

maximum points which should be avoided. When the power curve satisfies the requirement in 

section II, the proposed MPPT is effective to track the global peak.  
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Figure 2. 31 MPPT tracking with proposed MPPT under partial shading: (a)P-V curve with I-V 

curve (b) P-Fs curve 
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wrong peaks would be tracked. However, the proposed MPPT with flowchart illustrated in Figure 

2.28 (c) would track the global peak. The supposed tracking process is illustrated in Figure 2.30. 

Advanced Center Points Iteration MPPT control would increase tracking speed because of near 

boundary frequency at P2 as illustrated in LLC simulation curve Figure 2.30 (b). 

2.2.3 Simulation Results 

2.2.3.1 Simulation Results on LLC Resonant Converter 

A simulation prototype was built with Simulink to prove the proposed MPPT algorithm.    

PV system parameters are set as: PV panel curve: Isc=11.2A, Voc=41.2V, Imp=9.6A, 

Vmp=31.25V, Pmax=300W; LLC converter parameters: Cr=680nF, Lr=1.9uH, Lm=10.3uH, n=5.55, 

Fr=140kHz; Initial frequency range: 70kHz~280kHz; the reference DC link voltage is set as 

Vref=400V. The input capacitor connected to the PV panel: Cin=22uF (the calculation of Cin is 

provided in appendix) 

 
Figure 2. 32 V-I simulation waveforms of LLC converter with variance frequencies 

 

When a DC current source Iin is connected to the LLC converter with the restricted DC link 

voltage Vref, the data of Vin can be recorded at different switching frequencies under various Iin 

values. The fitting V-I curves with the PV panel curve as a comparison are illustrated in Figure 

2.31. They illustrate the same characteristics as analyzed in section III, which verify the 
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correctness of the calculations in Figure 2.2.     

 

Figure 2. 33 Overall control diagram of the proposed MPPT for grid-tied two-stage LLC 

micro-inverter 

 

The overall control diagram of the proposed MPPT for grid-tied two-stage LLC 

micro-inverter is illustrated in Figure 2.32. The PI voltage regulator is applied on the DC/AC 

inverter to regulate the bus voltage to Vref, and the feed forward Iref is calculated from Iin and Vin 

(Iref=VinIin/Vref) to accelerate the reaction time of the PI regulator. The proposed MPPT control 

method is realized on the DC/DC converter stage.     

Simulation waveforms of the micro-inverter applied the proposed MPPT are illustrated in 

Figure 2.33. 
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(a) 

 
(b) 

 
(c) 

Figure 2. 34 Proposed MPPT operation waveforms: (a) PV power vs Time (b) Switching 

frequency vs Time (c) DC-link voltage vs Time 

 

As illustrated in Figure 2.28, the frequency of P5)P4,(P3,Pmax  is used as the center point of 

the next iteration, so that the power at this frequency does not need measurement again. Thus 

excluding the first iteration, every iteration has only two frequencies. The waveforms are 

illustrated in Figure 2.33, the first iteration has three different frequencies; while other iterations 
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have two frequencies. This saves the simulation time. 

From the observation of Figure 2.33, the proposed MPPT method uses 3 iterations to enter the 

maximum power range (Pmax5e), and 5 iterations to convergent at the MPP. Figure 2.33 (c) shows 

that the dc-link voltage has impulses when frequency perturbations taking place. With the 

perturbation decreasing, the impulse magnitude is decreasing.  

 
(a) 

 
   (b) 

 
(c) 

Figure 2. 35 MPPT waveforms when irradiation changing from 100% to 50% at the time 

tx=0.2s :(a) PV power vs Time (b) Switching frequency vs Time (c) DC-link voltage vs Time 

0.25 0.5 0.75 1 1.25
0

50

100

150

200

250

300

350

400

t/s

Pin/W

tx

iteration 

1

iteration 

2

iteration 

3

iteration 

4

t/stx

0.25 0.5 0.75 1 1.25
0

20

40

60

80

100

120

140

t/s

Fs/kHz

iteration 

1

iteration 

2

iteration 

3

iteration 

4

tx

0   0.25 0.5 0.75 1 1.25
300

350

400

450

t/s

Vdc/V



66 

 

Figure 2.33 shows that when a sudden change from 100% to 50% irradiation takes places at 

time tx=0.2s, the proposed MPPT algorithm uses 1 iteration to enter the maximum power range 

(Pmax5e), and 4 iterations to convergent at the new MPP. 

Advanced Center Points Iteration MPPT is implemented on the same prototype, and 

simulation waveforms are illustrated in Figure 2.35. The MPPT takes only 1 iteration to enter the 

maximum power range (Pmax5e), and 4 iterations to achieve the MPP. Compared with Figure 2.33, 

it saves the tracking time and power losses during the tracking process. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. 36 Advanced Center Points Iteration MPPT control: (a) PV power vs Time (b) Switching 

frequency vs Time (c) DC-link voltage vs Time 
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To give a comparison with the proposed MPPT, conventional P&O controllers with fixed 

perturb are implemented on the simulation prototype. 

 
(a) 

 
(b) 

Figure 2. 37 Conventional fixed perturb P&O MPPT: (a) fs=10kHz, (b)Vin=1V  

 

Figure 2.37 (a) shows the MPPT curve with a fixed perturb step fs=10kHz provided to the 

switching frequency. The initial frequency is 200kHz to avoid the "flat section" near 280kHz as 

shown in Figure 2.23. As illustrated in Figure 2.37 (a), to avoid the oscillation under steady state, if 

an oscillation is observed and confirmed, the P&O would be stopped at the higher power point. If 

the perturb step is reduced, the oscillation would decrease while the tracking time would increase. 

Moreover, it is obvious to observe from Figure 2.23 that with irradiance decreasing, lower start 

frequency is required to operate the MPPT successfully. For example, under 500W/m2, it is better 

to start MPPT at 160kHz. 
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Figure 2.36 (b) shows the MPPT curve with a fixed perturb step Vin=1V. The perturbation is 

provided to the input voltage by adding a PI regulator on the LLC stage. As illustrated in Figure 

2.36 (b), the frequency adjustment caused by the PI regulator induces high frequency power 

oscillation, which is unavoidable. The oscillation magnitude generates low accuracy MPP. With 

the perturbation reduced, the oscillation would not be decreased.  
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(b) 

Figure 2. 38 Proposed MPPT operation waveforms under partial shading condition: (a) PV power 

vs Time (b) Switching frequency vs Time 

 

Figure 2.36 illustrated the operation waveforms of the proposed MPPT when partial shading 

of Figure 2.31 is provided. The operation process is exactly as same as expected in Figure 2.31. 

2.2.3.2 Simulations on Other Resonant Converters 

The proposed MPPT is also suitable to be applied on other resonant converters analyzed 

before. Simulation prototypes were built with Simulink to carry out the proposed MPPT to support 

the analysis.  
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A. PRC  

PV system parameters are set as: PV panel curve: Isc=11.2A, Voc=41.2V, Imp=9.6A, 

Vmp=31.25V, Pmax=300W; PRC converter parameters: Cp=1uF; Ls=5uH; n=5.5, Fr=71.2kHz; 

Initial frequency range: 60kHz~106kHz; the reference DC link voltage is set as Vref=400V. 

Simulation waveforms are illustrated in Figure 2.38. 

 
(a) 

 
(b) 

Figure 2. 39 Proposed MPPT operation waveforms on PRC converter: (a) PV power vs Time (b) 

Switching frequency vs Time 

 

B. LCC 

PV system parameters are set as: PV panel curve: Isc=11.2A, Voc=41.2V, Imp=9.6A, 

Vmp=31.25V, Pmax=300W; PRC converter parameters: Cs=1uF, Cp=1uF, Lp=10uH, n=5.5, 

Fr=71.2kHz; Initial frequency range: 72kHz~90kHz; the reference DC link voltage is set as 

Vref=400V. Simulation waveforms are illustrated in Figure 2.39.  
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(a) 

 
(b) 

Figure 2. 40 Proposed MPPT operation waveforms on PRC converter: (a) PV power vs Time (b) 

Switching frequency vs Time 

 

C. LCLC 

PV system parameters are set as: PV panel curve: Isc=11.2A, Voc=41.2V, Imp=9.6A, 

Vmp=31.25V, Pmax=300W; PRC converter parameters: n=4,Vref=400V, Cs=1.17uF, Cp=0.585uF, 

Ls=4.06uH, Lp=8.12uH, Fr=73.04kHz; Initial frequency range: 150kHz~180kHz; the reference 

DC link voltage is set as Vref=400V. Simulation waveforms are illustrated in Figure 2.40. 
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(a) 

 

(b) 

Figure 2. 41 Proposed MPPT operation waveforms on PRC converter: (a) PV power vs Time (b) 

Switching frequency vs Time 

 

As illustrated in Figure 2.39~Figure 2.41, proposed MPPT operation can successfully track 

the maximum power point on various resonant converter topologies.  

2.2.4 Experiment Results 
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stabilize the input voltage. For the LLC converter, considering the maximum input current 

condition, which would generate maximum ripple on input capacitor, the basic equation 

  dt

dV
Ci

in

in

C
C  is used to calculate the capacitance.  

 
(a) 

 
(b) 

 
(c) 

Figure 2. 42 Input capacitor current with various switching frequencies: (a) Fs<Fr (b) Fs>Fr (c) 

Fs=Fr 
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2.3ustx   (2.34) 

The LLC resonant cycling period is 

7.143us1/140kHzTr   (2.35) 

Thus input capacitance could be calculated with 

in
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xs
peakin,

t

C

C

in

V

))
2

t

4

T
(ωsin(sinωI

V

i
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 dtt
 (2.36) 

Assume that VCin<1V, Iin,peak<20A, the input capacitance should be larger than 14.15uF. In 

this prototype, the input capacitance is selected to be 22uF. 

 
(a)                                     (b) 

 
(c)                                     (d) 

Figure 2. 43 Advanced Center Points Iteration MPPT waveforms with different PV curves: (a) 

Isc=5A, Voc=34V, Vmp=29V, Imp=4A(b)Isc=11A, Voc=34V, Vmp=30V,Imp=10A (c)MPP changing 

from Imp=5A, Vmp=31V to Imp=4A, Vmp=29V (b)MPP changing from Imp=4A, Vmp=29V to Imp=5A, 

Vmp=31V  
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Figure 2.43 demonstrates the Advanced Center Points Iteration MPPT applied on the 

prototype. Figure 2.42 (a) shows the MPPT waveforms with PV curve: Isc=5A, Voc=34V, Imp=4A, 

Vmp=29V set inside the solar array simulator. Figure 2.43 (b) shows the MPPT waveforms under 

PV curve: Isc=11A, Voc=34V, Imp=10A, Vmp=30V. Figure 2.43 (c) and (d) shows the MPPT when 

MPP is changing from Imp=5A, Vmp=31V to Imp=4A, Vmp=29V, and changing back individually. As 

illustrated in Figure 2.43, the Advanced Center Points Iteration MPPT shows a fast tracking speed 

with little oscillation in steady state. Figure 2.43 has a smooth MPPT progress because of the 

buffer zone provided for the large frequency perturbation.  

To observe the Advanced Center Points Iterations MPPT more clearly, less buffer zone is 

provided and iterations are slowed down. Experiment waveforms are as shown in Figure 2.43.     
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(c) 

Figure 2. 44 Advanced MPPT waveforms with less buffer and reduced iteration time with different 

PV curves: (a) Isc=5A, Voc=34V, Imp=4A, Vmp=29V(b) MPP changes from Imp=4A, Vmp=29V to 

Imp=5A, Vmp=31V (b) MPP changes from Imp=5A, Vmp=31V to Imp=4A, Vmp=29V 
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Figure 2.44 illustrates the advanced MPPT applied on the prototype with fewer buffers. 

Figure 2.44 (a) shows the MPPT waveforms of the prototype under PV curve: Isc=5A, Voc=34V, 

Imp=4A, Vmp=29V. The MPPT takes 2 iterations to enter the maximum power range (Pmax5e), and 

3 iterations to achieve the MPP. Figure 2.44 (b) shows the MPPT waveforms when the PV curve is 

changing from Isc=5A, Voc=34V, Imp=4A, Vmp=29V to Isc=6A, Voc=34V, Imp=5A, Vmp=31V. The 

MPPT takes 2 iterations to enter the maximum power range (Pmax5e), and 4 iterations to achieve 

the MPP. Figure 2.44 (c) shows the MPPT waveforms when the PV curve is changing back. The 

MPPT takes 1 iterations to enter the maximum power range (Pmax5e), and 2 iterations to achieve 

the MPP. 

Figure 2.44 demonstrates the process detail of the advanced MPPT clearly as it is slowed 

down for observation purposes. Although the number of MPP required iterations is dependent on 

specific conditions, the proposed MPPT can always enter the maximum power region (Pmax5e) in 

one or two iterations, which is very fast compared with the conventional P&O MPPT. 

 
(a)                                          (b) 

Figure 2. 45 Center Points Iteration MPPT under PV curve:Isc=5.6A, Voc=38.5V, Vmp=28.5V, 

Imp=4.9A (a)Normal Center Points Iteration MPPT (b)Advanced Center Points Iteration MPPT 

 

To give a comparison with the Normal Center Points Iteration MPPT, an experiment was 

performed on the same prototype. The MPPT waveforms are as illustrated in Figure 2.45. PV 

curve is set as: Isc=5.6A, Voc=38.5V, Vmp=28.5V, Imp=4.9A. Figure 2.45 (a) shows that the Normal 
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Center Points Iteration MPPT takes 4 iterations to enter the maximum power region, and more 

than 5 iterations to reach the MPP. While Figure 2.45 (b) shows that the Advanced Center Points 

Iteration MPPT takes 2 iterations to enter the maximum power region, and 3 iterations to reach the 

MPP. 

Figure 2.45 shows that the Advanced Center Points Iteration MPPT really makes 

improvement as expected based on the Normal Center Points Iteration MPPT. 

2.2.4.2 Experiment Results on LCLC Prototype 

A LCLC converter prototype was built to carry out the proposed MPPT algorithm. A solar 

array simulator (Agilent Modle E4360A) was used to simulate a PV source. For the LCLC 

converter, the circuit parameters are set as: Cin=22uF, Cs=590nF, Cp=276nF, Ls=6.23uH, 

Lp=12.6uH, n=2.26, Fr=84kHz. Since only DC/DC converter is provided here, the output DC 

voltage of the LCLC converter is uncontrolled to regulate the output power. 

Based on the analysis about the LCLC resonant converter in section 2.1.2.3, the initial 

searching interval is selected to be [1.9Fr, 2.5Fr], which is [160kHz, 210kHz]. 
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(a)                                     (b) 

Figure 2. 46 Advanced Center Points Iteration MPPT waveforms with different PV curves: (a) 

Isc=5.6A, Voc=38V, Vmp=28V, Imp=4.9A (b)MPP changing from Imp=2A, Vmp=25V to Imp=4A, 

Vmp=30V 

 

Figure 2.46 illustrates the advanced MPPT applied on the LCLC prototype. Figure 2.46 (a) 

shows the MPPT waveforms of the prototype under PV curve: Isc=5A, Voc=34V, Imp=4A, Vmp=29V. 
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Figure 2.46 (b) illustrates the advanced MPPT operation when the maximum power point 

suddenly changed from Imp=2A, Vmp=25V to Imp=4A, Vmp=30V. As illustrated in Figure 2.46, the 

Advanced Center Points Iteration MPPT shows a fast tracking speed with little oscillation in steady 

state. For the LCLC topology, the initial frequency range is much narrower than the LLC 

topology.  

2.3 Summary 

In this chapter, the importance of DC/DC converter is analyzed carefully as a construction part 

of the two-stage micro-inverter with the technical requirements listed out. The resonant converters 

with advantages in soft switching and high switching frequency are good candidates for the 

two-stage micro-inverter. The operations of various conventional resonant converters are analyzed 

carefully in frequency domain. Because the LLC topology among these resonant converters has 

further advantages in soft switching under various loads, it is selected as the DC/DC stage.  

To track the maximum power point of the PV panel, MPPT function is very important to 

harvest solar power continuously under various environments. Although a lot of MPPT techniques 

have been proposed since the 1960s, few of them deal with frequency modulation on resonant 

converters. A center points iteration MPPT is proposed in this chapter. The MPPT is verified to be 

suitable for various PV power curves as analyzed. The simulation PV power curves of the LLC 

micro-inverter under various irradiances have a flat section which would mislead the conventional 

MPPT. However, the proposed MPPT could solve the problem with Center Points Iteration. 

Moreover the proposed MPPT has a fast tracking speed and little oscillation power loss in steady 

state. An Advanced Center Points Iteration MPPT is induced based on the same theory to 

accelerate the tracking speed. Flowcharts of the MPPT are provided to apply the theory with a 

DSP.  

Simulation and experiment results verify the effectiveness of the proposed MPPT. To expand 
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the MPPT application, the simulations of proposed MPPT on other resonant converters are carried 

out. The waveforms show the feasibilities. 

The proposed MPPT is also applied on other resonant converters under simulations with 

MATLAB SIMULINK. Waveforms support its effectiveness in frequency modulation on various 

resonant converters. Moreover, a LCLC converter prototype is also built to carry out the 

experiments to confirm the analysis in advance. The experiment results match with the theory 

analysis as expected. 
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CHAPTER THREE: DC/AC INVERTER STAGE 

3.1 DC/AC Inverter Topologies Introduction 

In double-stage micro-inverter PV systems, the DC/AC inverter stage is employed to convert 

DC power into AC power and feed the power into the utility grid. Since the input side is high 

constant DC voltage generated by the DC/DC converter stage, and galvanic isolation is already 

realized in DC/DC converter stage, the DC/AC inverter stage has no requirements in voltage 

rising and isolation. Thus a lot of topologies are suitable to apply here. 

Based on the topologies’ differences, the DC/AC inverters can basically be divided into three 

groups: voltage source inverter (VSI), current source inverter (CSI), and impedance source 

inverter (ZSI), which are illustrated individually in Figure 3.1. 

 
(a)                                   (b) 

 
(c) 

Figure 3. 1 Three classes of inverters topologies: (a) VSI (b) CSI (c)ZSI 

 

Figure 3.1(a) shows the topology of a conventional VSI. According to the literatures[66, 67], 
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so far VSIs are the dominant topologies for PV inverter applications with advantages below. 

 Mature in topologies and controller design techniques.  

 Various existed soft switching methods for efficiency improvement. 

 Broad applications in whole power levels. 

There are also some disadvantages of the typical VSIs which have to be considered in design. 

  The maximum ac voltage output of a VSI is limited by the dc input source voltage because 

of the buck intrinsic quality. Dead-time to block both upper and lower devices for safety 

considerations which would cause waveform distortion. 

 An output LC filter is needed in providing a sinusoidal voltage compared with the CSI, which 

would cause additional power loss and increase control complexity. 

The current source inverter (CSI) as illustrated in Figure 3.1(b) does offer some specific 

advantages below. CSIs are now another option for the PV inverter application with advantages 

below.[66] 

 Intrinsic boost function which has less strict requirement on the DC bus voltage. 

 Implicit output short circuit protection. 

 Significantly reduced electromagnetic interference because of the capacitive voltage filters 

located directly on the inverter output.[68] 

There are also some disadvantages of the CSIs mentioned as below which have limited the 

application of the CSIs. 

 Usually a relatively large inductor connecting with dc bus voltage in series is required. 

 At least one of the upper devices and one of the lower devices have to be gated on at any time. 

Overlap time is also required for safety consideration which would cause waveform distortion. 

 The main switches have to block reverse voltage that requires series diodes in combination, 

which increases the conduction losses.  

The CSIs are mainly known from high power level and lately are investigated in the 
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application of medium and low power PV inverter.[69, 70] 

The Z-source inverter is a combination of VSI and CSI, as illustrated in Figure 3.1 (c). Since 

proposed in the last decade by paper [71], ZSIs are widely studied and analyzed for advantages 

below. 

 They can operate as either the voltage source or the current source type. 

 Theoretically, the voltage gain can be any value between 0~∞. 

 No safety problem caused by short circuit or open circuit. 

There are also some disadvantages of the ZSIs. 

 Contains relatively high input current ripples, which may result in high stresses on the DC-link 

inductors and capacitors.[72] 

 More complicated in controller design compared with VSIs and CSIs. 

 No soft switching techniques available now for ZSIs. 

Thus the ZSIs are rarely implemented for low power applications [73-76].  

Considering the application of the DC/AC inverter stage, which is connected with a resonant 

DC/DC converter described in chapter two, the efficiency and volume requirements have the 

highest priority. Thus the VSI with the soft switching techniques available is the most competitive 

candidate compared with CSI and ZSI. Moreover, the micro-inverter usually has a low power level, 

which is rarely implemented by CSI and ZSI. In addition, as the first DC/DC stage has realized the 

voltage rising function, the advantages of CSI and ZSI in boost intrinsic are no longer competitive. 

Combining these considerations, VSI is selected for the application of the DC/AC inverter stage 

here.    

3.2 Review of the Soft Switching Technologies on Inverters 

In the application of VSI, increasing the switching frequency has become a design trend as it 

can decrease the size of both the reactive filter and energy-storage capacity, thus achieving higher 
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power density and better dynamic performance. However, higher switching frequency results in not 

only higher switching losses but also more severe electromagnetic interference (EMI).  

To increase the switching frequency, while maintaining the decent conversion efficiency and 

low EMI, soft switching is one of best options. 

In the recent decades various soft switching methods have been proposed [77-80]. They can 

generally be classified into two categories: passive soft switching [78-80] and active soft switching 

[81-94]. Active soft switching techniques, which usually can realize soft-switching conditions at 

full load range with high switching frequency, are preferable in recent research.  

A variety of active soft switching topologies have been proposed in last three decades [81-94]. 

Most of them can be divided into three groups: auxiliary resonant commutated pole (ARCP) group 

[81-84], resonant DC link inverter (RDCLI) group [85-90], and resonant AC-link converter 

(RACLC) [91-94].  

3.2.1 ARCP 

Since the basic ARCP topology was proposed in 1990, many soft switching topologies have 

been derived from the conventional ARCP topology [81-84]. Soft switching can be realized on both 

main switches and auxiliary switches. Although they can be applied broadly for the voltage source 

type single phase or three phase inverter, the number of auxiliary components is difficult to reduce. 

3.2.2 RDCLI 

The RDCLI was first proposed in 1986, and many topologies have been induced based on the 

fundamental RDCLI [85-90]. Comparing with the ARCP, they have the advantages of a lower 

number of auxiliary switches, lower voltage stress on the main switches and simpler control circuit 

for auxiliary switches [85-88]. For example, [89, 90] are proposed as minimum components soft 

switching topology. However, the driving signals of the auxiliary switches are always easily 
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influenced by various disturbances such as actions of the main switches. 

3.2.3 RACLC 

The RACLC was also proposed in 1990. The RACLC topologies are preferred as they can 

realize voltage boosting and electrical isolation at the same time [91-94], which is an advantage for 

the application of new energy power system generation. However the control circuit is complex 

and the bi-directional switches are required. 

3.3 The Proposed BCM Technique Without Auxiliary Components 

Auxiliary components are unavoidable for all of the soft switching topologies mentioned 

above. They construct a high-frequency resonant network centered around the main 

semiconductors [95, 96]. During their commutations the resonant network operates for a very short 

period to create ZVS or ZCS conditions for the main semiconductors.  

The proposed soft switching technique simplifies the inverter topology and reduces the cost as 

it does not require any auxiliary components. The body capacitors of the main MOSFETs and the 

output linear inductor are applied together to form a resonant circuit. The inductor current is 

intentionally operated in bi-direction within a switching cycle to generate ZVS conditions during 

commutations. Meanwhile the average inductor current is controlled to generate an AC voltage on 

the output capacitor. The realization of ZVS decreases switching losses while the bi-directional 

current increases conduction losses (because the bi-directional current increases the rms value). A 

trade-off has to be made between them. The proposed soft switching technique is suitable for low 

power applications, where the switching losses usually are dominant.  

Three different current mode control schemes are derived from the basic operation principle of 

the proposed soft switching technique. They are referred to as Boundary Current Mode (BCM) 

control scheme, Variable Hysteresis Current Mode (VHCM) control scheme, and Constant 
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Hysteresis Current Mode (CHCM) control scheme respectively. All of which are easily 

implemented with a digital controller. 

3.3.1 Operation Principle of the Proposed ZVS Technique 

 
(a)                                   (b) 

 

(c) 

Figure 3. 2 inverter topologies suitable for the proposed ZVS technique: (a)single-phase full 

bridge inverter (b)single-phase half bridge inverter (c)three-phase half bridge inverter 

 

Figure 3.2 illustrates a set of inverter topologies suitable to operate the proposed soft 

switching technique. Figure 3.2(a) demonstrates a single-phase full bridge inverter; Figure 3.2(b) 

demonstrates a single-phase half bridge inverter; and Figure 3.2(c) demonstrates a three-phase half 

bridge inverter. For the three-phase half bridge inverter, because the three phases are decoupled, 

each phase operates independently as the same as single-phase half bridge inverter. Therefore, in 

this paper, the detailed operation principles and design considerations are analyzed only for 

single-phase inverter topologies (including both half and full bridge single-phase inverters).    
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parasitic capacitance of MOSFET respectively. To achieve zero voltage switching conditions, each 

MOSFET should be turned on after its body diode is conducting. Therefore, a bi-directional 

inductor current is required for every switching cycle.  

 

Figure 3. 3 Key waveforms of BCM inverter 

 

3.3.1.1 Full bridge single-phase inverter 

Figure 3.2 (a) illustrates a full-bridge single-phase inverter with one leg operating in 

switching frequency and the other leg operating in line frequency. To simplify the analysis, assume 

that the whole inverter system has achieved steady state, and the output voltage (Vo) is 

predominantly sinusoidal. Since the switching frequency (fs) is much higher than the output 

voltage frequency, the load voltage (Vo) is assumed to be constant in one switching period (Ts). 

The positive directions of the output voltage and the inductor current are illustrated as Figure 3.4 

<stage 1>. Depending on the polarity of the output voltage, the operation of the inverter can be 

divided into two modes: 1. Mode 1 (Vo>0); 2. Mode 2 (Vo<0). Each mode has 6 stages as shown in 
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Figure 3.4. The detailed analysis is as follows.  

 

<stage 1>                          <stage 2> 

 

<stage 3>                           <stage 4> 

 
<stage 5>                           <stage 6> 

Figure 3. 4 Operation stages for the full bridge single-phase inverter 

 

 Mode 1 (Vo>0) 

Stage 1 [t0-t1] : During this stage Q1 and Q4 are on, whereas Q2 and Q3 are off. The DC voltage 

transfers energy to the inductor and the inductor current increases linearly. The voltage across 

output capacitor C1 is zero and the voltage across capacitor C2 is equal to the input voltage. 
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Stage 2 [t1-t2]: Q1 turns off when the inductor current reaches the expected peak current at 

time t1. The output capacitors of the MOSFETs C1 and C2 are charged and discharged respectively 

through the inductor current until C2 is fully discharged. The status expressions are depicted as  
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Stage 3 [t2-t3]: As C1 is charged above DC bus voltage, the inductor current freewheels 

through the body diode D2, creating zero voltage switching condition for Q2. The inductor current 

flows through the body diode D2 and decreases linearly as shown in Figure 3.3.  
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Stage 4 [t3-t4]: At time t3, with the arriving of the driver signal for Q2, the conductivity of the 

MOSFET increases. Thus the inductor current can be regarded as shifting from D2 "channel" to Q2 

conductive "channel". The inductor current first decreases to zero and then increases in the 

negative direction. The status equations in this stage are the same as those in stage 3. 

Stage 5 [t4-t5]: At time t4, Q2 turns off, and the negative peak current charges the capacitor C2 

to DC bus voltage and discharges the capacitor C1 to zero voltage respectively. The status 

equations in this stage are the same as those in stage 2. 
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Stage 6 [t5-t6]: When the voltage across C2 increases above DC bus voltage, the body diode D1 

freewheels the inductor current. The status equations are the same as stage 1. 

 
                  <stage 1>                  <stage 2> 

 
                    <stage 3>                <stage 4> 

 
                   <stage 5>                   <stage 6> 

Figure 3. 5 Operation stages for the half bridge single-phase inverter 

 

 Mode 2 (Vo<0) 

The analysis for this mode is similar to the analysis for mode 1 except Q2 and Q3 are kept the 

on-state for all the six stages. 
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600V in our case) power MOSFET in the third quadrant is less common, but nevertheless follows 

a similar operation principle. 

3.3.1.2 Half bridge single-phase inverter 

Figure 3.2 (b) illustrates a half-bridge single-phase inverter circuit. It can also be regarded as 

one phase of the three-phase inverter as shown in Figure 3.2 (c). Take Figure 3.2 (b) as an example, 

when the switching commutation takes place the body capacitors C1, C2 and the inductor Ls 

construct a resonant network to generate zero voltage condition for the next turning-on switch 

during the dead time. The analysis procedure is the same as the afore-presented full-bridge inverter. 

The operation equivalent circuits for each stage are illustrated as in Figure 3.5.  

3.3.2 Current Modulation Design 

 
(a)                              (b) 

 

(c) 

Figure 3. 6 Inductor current waveforms for different current mode control schemes:(a)BCM, 

(b)CHCM, (c)VHCM 
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requirement Ip++Ip-=2Io,peaksint has to be satisfied in every switching cycle. (Ip+ and Ip- refer to the 

positive and negative peak currents individually.) 

The proposed current control schemes satisfy the requirements as illustrated in Figure 3.6.  

For these three schemes, Ip+ and Ip- have different expressions. (To simplify the analysis all the 

expressions are under Vo>0 condition.) 

3.3.2.1 Boundary Current Mode (BCM) 

As illustrated in Figure 3.6(a), the BCM mode is featured with a fixed reverse current I, 

where the peak current Ip+ and Ip- can be expressed as: 
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3.3.2.2 Constant Hysteresis Current Mode(CHCM) 

The CHCM mode is shown as Figure 3.6(b). This mode is featured with a constant hysteresis. 

The peak current Ip+ and Ip- can be expressed as: 
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3.3.2.3 Variable Hysteresis Current Mode (VHCM) 

The VHCM mode is shown as Figure 3.6(c). This mode has a variable current band with a 

variable reverse current. The peak currents Ip+ and Ip- can be expressed as:  
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For (3.9), 0<I*<Io,peak, when I* decreases to zero (3.9) can be simplified to (3.5) and when I* 

increases to Io,peak (3.9) can be simplified to (3.7). 
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As analyzed before, the key point of this soft switching technique is that the inductor current 

should be large enough to generate the zero voltage condition during the switching transition 

periods as shown in Figure 3.3. Thus the dead time and the peak inductor current should satisfy the 

equation below. 

 /pinDdeadtime /I2CVtt  (3.10) 

Where tdeadtime refers to deadtime, and tD refers to time required to generate ZVS. 

To simplify the analysis, tdeadtime is assumed to be much smaller than the switching periods and 

duty cycles. According to the voltage-second balance across the inductor Ls the expression of 

turn-on/off time and switching frequency can be derived for the half bridge inverter as: 
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The maximum and minimum frequencies of the half bridge inverter are 
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For the full bridge inverter the equation for turn-on/off time and switching frequency can be 

expressed as: 
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Based on equations (3.11) and (3.13) the frequency comparison waveforms for full bridge 

inverter and half bridge inverter can be illustrated as Figure 3.5 (a). (Figure 3.5 (a) shows the  
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(a) 

 
(b) 

Figure 3. 7 (a)Switching frequency comparison waveforms, (b)Inductor current rms value 

comparison 

 

waveforms of the switching frequency VS t.) For the same topology under the same controller 

scheme, the shapes of frequency waveforms are similar with each other. Moreover, for the same set 

of Vd, Vo, Po, and Ls, the full bridge inverter always has a lower switching frequency than the half 

bridge inverter. It is obvious to observe from Figure 3.7 (a) that for the full bridge topology the 
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design consideration usually the switching frequency is not changing from zero to the maximum 

value shown as Figure 3.7 (a). So when the switching frequency drops close to zero all switches 

could be turned off at the same time until the switching frequency rises up away from zero again.  

This period is referred as all-off period in this paper. When the all-off period is small enough 

the output voltage distortion caused by this period could be neglected (When the all-off period is 

less than π/36, THD caused by the all-off period is less than 1%). Based on equation (3.13) and the 

distortion consideration of the all-off period, the maximum and minimum frequency expression of 

full bridge inverter are derived: 
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Where, for BCM: I=Io,peak, and for VHCM: I=Io,peak-I
*. 

Based on equations (3.4-3.9) the frequency comparison waveforms for three different current 

mode control schemes are also illustrated in Figure 3.7 (a). It is obvious to observe from Figure 3.7 

(a) that for both inverter topologies the BCM has the widest switching frequency range while the 

CHCM has the narrowest range. The frequency range of the VHCM is somewhere between them. 

Figure 3.7 (b) illustrates that for both inverter topologies the BCM has the lowest rms value of 

inductor current while the CHCM has the highest rms value of inductor current. The frequency 

range is reduced at the expense of the increased current near the zero crossing point, which also 

causes the rms value of ILs increase and the conduction losses increase. 
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3.3.3 Power Dissipation Analysis 

Although the proposed current modulations realize zero voltage switching during the turn-on 

period, there are still various losses for the inverter system such as the MOSFETs and the inductor 

conduction losses, the anti-parallel diodes losses, the MOSFETs turn-off switching losses, and the 

inductor core losses etc.  

3.3.3.1 Conduction Losses 

The conduction loss  

Pcond=Irms
2(Ron+RLs) (3.16) 
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In (3.17), toni and toffi are calculated by (3.11) and (3.13); Ron is the total conduction resistance 

of MOSFETs; and RLS is the ac resistance of the inductor Ls.  

3.3.3.2 Anti-Parallel Diodes Losses 

               
(a)                                    (b) 

Figure 3. 8 (a) equivalent circuit model for conducting diode (b) turn-off transient for MOSFET 

 

The anti-parallel diode of a MOSFET when passing through a current can be equivalent as a 

voltage drop uD0 connected in series with a resistor RD as shown in Figure 3.7(a). Turn-off losses in 

the anti-parallel diode are very small and are normally ignored. Turn-on losses can be calculated 

by 
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In (3.18), tdeadtime and tD are shown as Figure 3.3 tdeadtime is a given constant, while tD can be 
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calculated by (3.10). 

3.3.3.3 MOSFETs Turn-Off Loss  

During the turn-off period, the MOSFET voltage VDS is rising and current ID is falling as 

illustrated in Figure 3.7(b). The MOSFET operates in magnifying region. Thus the capacitance Ciss 

is changing suddenly. 

)t(t)I(IV
2

1
P fallriseppinMoff    (3.19) 

In (3.19), 
plateau

GrssDS
rise

V

RCV
t  , 

plateauGS

GrssDS
fall

V-V

RCV
t  . Observing from the MOSFET data sheet, 

Crss is decreasing a lot with the increasing of the voltage VDS. Normally Crss(ID*Rdson)>>Crss(Vin), 

to simplify the calculation, assume that Crss=Crss(ID*Rdson)/2. 

3.3.3.4 Inductor Core Losses 

As the voltage across the inductor is a frequency-varying, duty cycle-varying waveform, the 

core losses are very difficult for calculation. Paper [86] proposed a core loss estimation method 

dealing with these limitations. 

  ])t)/(2t(Δ)t)/(2tαV[(ΔBP offi
n

offi
m
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n
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m

core B  (3.20) 

In (3.20), V is the volume of the core. Although , m and n are constants for each core 

material, multiple linear regression technique based on core loss data pool is required to obtain 

them. As the inductor core losses are difficult to calculate under the varying-frequency 

varying-duty cycle conditions, it is not included in the loss analysis here. 
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Figure 3. 9 Maximum switching frequency and power losses for different current modulations  

 

Figure 3.9 shows the maximum switching frequency with the power losses for various current 

modulations. To give a comparison between these current mode controllers, not only are the circuit 

parameters for the inverter systems the same, but also (Ip+-Ip-)|max=5A is selected as a restrictive 

condition for all these control schemes. For the half bridge inverter under VHCM control when I 

decreases to 0.735A VHCM scheme can be simplified to BCM scheme, and when I increases to 

2.5A VHCM scheme turns into CHCM scheme. It is obvious to observe from Figure 3.8 that with 

the increase of I ,the maximum switching frequency decreases, and the power losses increase. 

Additionally, the full bridge inverter has obviously narrower switching frequency range and fewer 

power losses than the half bridge inverter under the same current mode controller.   
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3.3.4 Modeling and Controller Design 

 
Figure 3. 10 Close loop hybrid control diagram 

 

Figure 3. 11 Equivalent circuit of power plant 

 

 

Figure 3. 12 Simplified block diagram of loop gain 

 

To ensure the ZVS for turn-on switching transitions a close loop controller to restrict the peak 

inductor current Ip+/- is very important, especially when disturbances from the output side or the 

input side are injected into the inverter system. This requires accurate sensing of the peak inductor 

current. However, as the switching frequency is varying with time and the highest operation 

Ls

Cs

+

Vo

-

Lo

RL

Vo

Full 

bridge

Half

bridge

DC

Source

Vin

or

Driving 

signals

A

B

D

CLK

Q
+
-

+
-

iLsref,up

iLsref,dn

iLs

ADD

DSP

Dead

time

Ls

Cs RL

Vd

-Vd

ILs

Vo

+

-

GEAGid

ks Giv

ea

0V̂ref 

oV̂

oV̂
ont̂LsÎ
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frequency could go beyond 200kHz, at which frequency the ADC sampling of peak inductor 

current is too fast for the DSP.   

Therefore, a hybrid current control strategy, which combines analog and logic units, is 

proposed. The diagram is shown in Figure 3.10. Since the inductor current includes both the 

switching frequency and the line frequency it is hard to measure with a single transformer. 

However, it can be sensed with a high frequency current transformer and a low frequency current 

sensor chip which are separately sensed and added from the capacitor and the output side inductor. 

The DSP takes the tasks of outside PI control (as shown in Figure 3.10) and produces the current 

reference according to the selected current control scheme.  

The analog and logic units implement the current mode control. As the three-phases are 

decoupled with each other in the three-phase half bridge inverter, the single-phase half bridge 

controller can be simply extended for the three-phase application. For each phase only two 

comparators and a D flip-flop are needed to achieve peak current comparisons and produce the 

switching signals. Each of the discrete components has only several nanoseconds propagation 

delay. With the hybrid control the overall current control delay does not exceed 250ns.[88] 

To analyze the controller design, the equivalent circuit of power plant could be simplified as 

illustrated in Figure 3.11, where the input voltage is a square signal generated with the bridge. The 

two voltage levels of the square signal are Vd and -Vd individually, while the time lengths for 

different values are dependent on the controller.  

The close loop gain could be simplified as illustrated in Figure 3.12, where the Giv refers to 

the power plant illustrated in Figure 3.11; GEA refers to the outside PI control; Gid refers to the 

current comparators; and ks refers to the proportion value between instantaneous inductor current 

and line frequency inductor current. 
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Like the peak current controller, the current comparators simplify the voltage loop design to a 

first order system design, which is easy to compensate stable.  

3.3.5 Simulation and Experiment Results of Proposed ZVS Technique 

3.3.5.1 Simulation Results of Proposed ZVS Technique 

Matlab Simulink has been used to simulate the proposed control algorithms. Parameters of the 

full bridge single-phase inverter simulation system are set as: Input: 250Vdc, Output: 170Vac,pk, 

rated power: 150W, 60Hz; Ls=560uH, Cs=1uF. Parameters of the half bridge single-phase inverter 

simulation system are set as: Input: 420Vdc, Output: 170Vac,pk, rated power: 150W, 60Hz, 

Ls=220uH, Cs=1uF.  

For application consideration the inverter may provide power to various output loads. When 

the load is not resistive, DSP is used to get the degree differential between output voltage and 

output current as analyzed in [89] and a degree adjustment can be made in calculation. Figure 

3.13(a-c) illustrates the full bridge inverter waveforms when connecting to a resistive load, 

inductive load, and capacitive load respectively. 
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(a) 

 

 (b) 

 

(c) 

Figure 3. 13 Simulation waveforms for various load for a full bridge inverter:(a)resistive load 

(b)inductive load (c)capacitive load  
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(a) 

 

 (b) 

 

(c) 

Figure 3. 14 Simulation waveforms for various load for a half bridge inverter:(a)resistive load 

(b)inductive load (c)capacitive load 
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(a) 

 

(b) 

 

(c) 

Figure 3. 15 Simulation waveforms for three different current mode control schemes: (a)BCM 

(b)CHCM (c)VHCM 
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(a)                                     (b) 

 
(c) 

Figure 3. 16 FFT analysis of output voltage for three different current mode control schemes: 

(a)BCM (b)CHCM (c)VHCM 

 

For the full bridge inverter, as analyzed before, all switches are turned off during zero 

crossing section of the output voltage to avoid zero switching frequency, and this causes the  

distortion in the output voltage as shown in Figure 3.13. Especially when connected with an 

inductive/capacitive load, the distortion is worse than when connected with a resistive load, 

because the current magnitude of voltage zero crossing point is larger than the minimum IP+/- value 

under resistive load. On the other side, the half bridge inverter with higher switching frequency 

does not have that zero crossing distortion as it does not have an all-off period as illustrated in 

Figure 3.7 (a). The simulation waveforms of the half bridge inverter for various load is shown in 



104 

 

Figure 3.14. 

The proposed VHCM and CHCM current control schemes, which mainly aim at reducing the 

switching frequency, are not necessary for the full bridge inverter, especially when considering the 

voltage distortion caused by the zero crossing point. Thus a half bridge inverter is selected to apply 

these current control schemes. Simulation waveforms are illustrated as Figure 3.15. The switching 

frequency ranges for individual current control schemes are VHCM: 33kHz-160kHz, CHCM: 

33kHz-95kHz, and BCM: 30kHz-238kHz. The FFT analysis histograms of the output voltages for 

the three schemes are illustrated as Figure 3.16. The CHCM has the best THD, while the BCM has 

the worst THD. The VHCM has a THD between them. 

3.3.5.2 Experiment Results of Proposed ZVS Techniques 

A 150W single-phase full-bridge inverter prototype has been built and the proposed control 

scheme has been applied to the prototype. The digital controller is implemented by microchip 

dspic30f2023. Parameters of the circuit system are set as below: 

Input: 250Vdc, Output:117Vac,rms, Rated power: 150W, 60Hz; Switching frequency: 

15kHz~41kHz; Ls=561uH, Rs=0.2, Cs=1uF 

Figure 3.17(a) demonstrates an output voltage waveform together with an inductor current 

waveform; which match the simulation results fairly well. Figure 3.17(b-d) illustrate the key 

waveforms of the proposed ZVS operation in one switching cycle, which are the same as those in 

Figure 3.3. It is obvious that before the arrival of the turn-on signal, the drain source voltage across 

the corresponding MOSFET has already decreased to zero. Therefore the proposed controller can 

realize ZVS during turn-on transitions. 
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 (a)                                         (b) 

  

(c)                                         (d) 

Figure 3. 17 Waveforms of BCM full bridge inverter for resistive load 

 

(a)                                         (b) 

Figure 3. 18 Waveforms of BCM full bridge inverter: (a) capacitive load (b) inductive load 

 

Figure 3.18 illustrates output voltage and inductor current waveforms when connecting with 

capacitive load and inductive load individually. Their shapes are similar with the simulation 

waveforms illustrated in Figure 3.17. 
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To give a comparison of the proposed soft switching technique, continuous conduction mode 

(CCM) hard switching control is implemented on the same prototype. The detailed parameters are 

as follows: 

 

Figure 3. 19 Efficiency waveform of full bridge BCM inverter  

 

                  (a)                                     (b) 

 

                  (c) 

Figure 3. 20 Waveforms of half bridge inverter with different current mode control schemes: 

(a)BCM (b)CHCM (c)VHCM 
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Input voltage: 250Vdc, Output voltage:170Vac,pk, Rated power:150W, 60Hz; Switching 

frequency: 20kHz; Ls=2.61mH, Rs=0.6, Cs=1uF 

Figure 3.19 shows the efficiency comparison between the full bridge BCM and 

hard-switching technique for full resistive load. The peak efficiency of the BCM technique can 

reach up to 98.5%, which is over 1.5% higher than the peak efficiency of the hard switching 

technique. All the efficiency was measured by a PZ4000 power analyzer. The measured efficiency 

does not include driving power loss. 

The VHCM and CHCM current control schemes are aimed at decreasing switching frequency 

in order to decrease switching loss and increase efficiency. As illustrated in Figure 3.7 (a), the half 

bridge inverter has a much wider switching frequency range than the full bridge inverter. Therefore 

a half bridge inverter prototype was built to implement the three different current control schemes. 

The detailed parameters of the inverter are as follows: 

Input voltage: 420Vdc, Output voltage:170Vac,pk, Rated power:150W, 60Hz; Ls=220uH, 

Rs=0.3, Cs=2.2uF 

Table 3. 1 Comparison of three different comparison modes 

 Frequency THD(%) Efficiency(%) ILs,rms(A) 

BCM 33kHz~325kHz 2.4% 97.5% 1.56 

VHCM 33kHz~190kHz 1.9% 97.4% 1.62 

CHCM 33kHz~95kHz 1.4% 97.2% 1.8 

 

As for the CHCM and VHCM, different current bands can be applied on the prototype, and 

they may all have various affections on the output efficiency. To give a comparison between these 

current mode controllers, Ip+-Ip-|max=5A is selected as a restrictive condition for all control modes. 

Additionally, to separate the VHCM scheme away from the CHCM scheme and the BCM scheme, 

Io,peak-I
*=I is set as an additional restriction for the VHCM scheme.(This makes the VHCM 
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scheme directly in the middle of the CHCM scheme and the BCM scheme) The output voltage and 

inductor current waveforms for three current mode controls are illustrated as in Figure 3.20 and the 

efficiency and frequency ranges are listed in Table 3.1.  

Figure 3.20 illustrates experimental waveforms of the three current mode control schemes. 

They are the same as the simulation waveforms illustrated by Figure 3.15. 

3.4 Comparison Research of ARCP with Proposed ZVS Technique 

A resonant tank of ARCP topologies consists of one resonant inductor, two bi-directional 

switches and two resonant capacitors, which could be added to a hard switching inverter without 

modifying the basic main circuit. During the commutation transitions, through the resonant tank 

zero voltage condition could be provided to the main devices and zero current condition could be 

provided to the auxiliary switches on both turn on and turn off period. Moreover, no extra voltage 

or current stresses could be added to the main switches. Thus high efficiency could be achieved 

under high switching frequency. 

3.4.1 Operation Principle of ARCP 

To give a comparison with the proposed ZVS, a conventional single phase ARCP is provided 

here. The topology of the ARCP is illustrated as in Figure 3.21, where S1 and S2 operate at high 

switching frequency, while S3, S4 operate at line frequency.   

 

Figure 3. 21 Simplified ARCP single phase inverter topology 
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The auxiliary switches operate during the commutation periods of the main switches. When S2 is 

about to open and S1 is about to close, the operation principle is illustrated as in Figure 3.22 and 

Figure 3.23. 

 

 

<stage 1> 

 

<stage 2> 

 
<stage 3> 

Figure 3. 22 Operation stages for the full bridge single-phase ARCP inverter 
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current is increasing linearly as illustrated in Figure 3.23.  
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Figure 3. 23 Key waveforms of ARCP inverter 

 

Stage 2 [t1-t2]: During this stage, the main switch S2 is opened. The resonant circuit is built up 

with components C1, C2, Lr, Cr1 and Cr2. When the voltage across Cr1 achieves zero, the diode D1 is 

turned on automatically, which creates the ZVS condition for the turning on of main switch S1.  
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Stage 3 [t2-t3]: During this stage, the main switch S1 is closed. The voltage on C1 begins to 

discharge inductor current iLr through Sa1, Da2, Ds1, and S1 as illustrated in Figure 3.22<stage 3>. 

When the inductor current is decreased to zero, the diode Da2 would block the current on the 
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negative direction, thus ZCS would be generated for the turn off of auxiliary switch Sa1. Then Sa1 

would be closed.  

t
2L

V
-)(ti(t)i

r

in
2LrLr   (3.24) 

For the commutation of S1 open and S2 open, the auxiliary circuit operates the same way as 

discussed before. 

3.4.2 Experiment Results of ARCP Technique 

The experiment waveforms of the ARCP are illustrated as in Figure 3.24. It operates under 

the ZVS the same way as described in Figure 3.23. 

  

(a)                                         (b) 

 

(c) 

Figure 3. 24 Experiment waveforms of the ARCP: (a) Driver signals for main and auxiliary 

switches (b) Resonant inductor current with a main switch driver signal (c) The driver signal and 

voltage across the MOSFET 
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Figure 3. 25 Efficiency waveform of full bridge single phase ARCP inverter 

 

The efficiency waveform of the single phase ARCP under different power is illustrated as in 

Figure 3.25. Compared with the proposed single phase BCM efficiency illustrated in Figure 3.19, 

the ARCP has much lower efficiency when the load is light. Moreover, the resonant circuit 

requires much more components compared with the BCM inverter, thus the cost is high. 

3.5 Summary 
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A review of the soft switching technologies on inverters is provided. Although all of them can 

realize soft switching, they require additional components as well. Thus a novel kind of ZVS 

technique without auxiliary components is proposed in this chapter, which is called BCM inverter. 
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linear inductor are applied together to form a resonant circuit. The inductor current is intentionally 

operated in bi-direction within a switching cycle to generate ZVS conditions during commutations. 

The operation principle is analyzed carefully with three different current modulation designs 

provided. The power dissipation is calculated to compare these current modulations. Simulation 

and experiment results verify the feasibility of the proposed soft switching technique.  

To give a comparison of the proposed ZVS technique with the conventional ZVS techniques, 

an ARCP prototype with advantages in turn-on and turn-off soft switching on all switches is 

provided. Experiment results show that the proposed BCM inverter has a better efficiency. 
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CHAPTER FOUR: ENERGY STORAGE INTEGRATED WITH THE 

MICRO-INVERTER/UTILITY INTERACTIVE SYSTEMS 

4.1 The Significance of Energy Storage Integrated PV Power System 

PV modules and arrays produce DC power, and the simplest PV system configuration is 

connecting load directly to the PV array. Due to various application requirements, electrical loads 

are varying widely in characteristics. Some of them require DC or AC power, while others may 

operate from either, such as resistive loads or universal motors. Considering the application 

requirements depending on load usage, load type, insolation, auxiliary power sources and many 

other factors, different components could be added in the simplest PV system to increase the 

complexity and configure different PV systems. For example, residential system, traffic light 

system, street lighting system, water pumping system, car charging system, solar farm system and 

so on. Some of them operate with the utility grid connection; some operate independently; while 

others operate appropriately in both situations.  

 

Figure 4. 1 PV system configurations 

 

There are currently some difficulties addressed to the PV systems, especially with the stand 

alone configuration. 
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Firstly, due the nonlinear characteristic VI curves of PV panel, which is varying with 

temperature and irradiance, the PV energy is by nature intermittent and unpredictable. 

Secondly, any power-generating system, for example a PV system, faces the problem of 

matching energy supply with demand. Demand can fluctuate considerably and changes occur 

within minutes or seconds. 

To balance the requirements from fluctuated load and intermittent source, energy storage is 

introduced into the PV system. The configuration could be illustrated in Figure 4.1. 

 

Figure 4. 2 Configuration of PV system with energy storage 

 

When the maximum power generated by PV panels is more than load demand, the excess 

energy would be flowed and stored in energy storage for later usage. When the load is over the 

maximum power supplied from the PV panels, energy storage releases power to the loads. 

Energy Storage performs two functions to increase the consistency, stability and reliability of 

PV system.  
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Short term power balancing deals with the intermittent and unpredictable PV power, which 

requires the energy storage system has fast dynamic response, high accuracy, symmetrical 

(charge/discharge) power handling capability, long cycling life, and low cost. Literature [97-99] 

propose different topologies and controllers for the short term power balancing requirement.  

Longer term energy management deals with the shifting load with relatively slow 

charging/discharging time over a long duration, which requires high energy storage capacity, high 

conversion efficiency, and low cost. For example, the street lighting system discussed in [99, 100] 

deals with the long term power management, which charges the battery during daytime, and 

releases energy at night. 

As a vital part of integrating and stabilizing PV systems, energy storage techniques have 

many types. Considering the current primarily used and researched techniques, they could be 

classified into seven groups characterized by the stored energy forms. 

 Compressed Air Energy Storage (CAES) 

 Pumped Hydro Storage (PHS) 

 Superconducting Magnetic Energy Storage (SMES) 

 Super-capacitors and capacitors 

 Flywheel 

 Fuel cell 

 Battery 
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Figure 4. 3 Storage classification considering the functions [101] 

 

With consideration of functions [101], these storage techniques can be classified as illustrated 

in Figure 4.3. Among all these energy storage techniques, batteries, particularly lead-acid types, 

with the cheapest price and mature technology, are by far the most common means used for energy 

storage in PV systems. 

  

(a)                                       (b) 

 

(c) 

Figure 4. 4 Architectures of battery integrated PV systems: (a) PV panel connection type (b) DC 

bus connection type (c) AC bus connection type 
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4.2 PV System Architecture with Batteries 

Based on the differences of the batteries’ locations, the architectures of battery integrated PV 

systems could be classified into three groups as illustrated in Figure 4.4.  

4.2.1 PV Panel Connection Type  

This type is illustrated in Figure 4.4 (a), where the batteries are directly or indirectly connected 

with the PV panel. The dashed DC/DC converter is designed to charge/discharge the batteries, 

which is avoidable in some PV systems. Literatures [102, 103]refer to this kind of architectures.  

4.2.2 DC Bus Connection Type  

This type is illustrated in Figure 4.4 (b), where the batteries are connected with DC bus lines. 

The dashed DC/DC converter refers to charger/discharger for the batteries, which is avoidable in 

some PV systems. Literatures [104-106] refer to this kind of architectures.  

4.4.3 AC Bus Connection Type  

This type is illustrated in Figure 4.4 (c), where the batteries are connected with the ac lines 

with a PFC converter. The ac lines could be connected with utility grid as shown in Figure 4.4 (c), 

and could also be diesel generator, wind turbines or any other electric source to improve load 

availability when PV energy is not available, as illustrated in Figure 4.5 PFC is unavoidable as AC 

power is required to convert to DC power for battery storage. Literature [107-110] refers to 

architecture with batteries connected with ac lines. 

Comparing those three architectures together, the PV panel connection type connects 

batteries at the PV panel side. When charging the batteries from the PV panel, the charging circuit 

is the shortest, thus the efficiency is the best. However, when charging the batteries from the grid 
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side, the charging circuit is much longer, and efficiency is reduced. Moreover, a bidirectional 

DC/DC converter and DC/AC inverter are required, which would increase the system complexity. 

Thus commonly for PV panel connection architecture the batteries are charged from the PV panel 

and discharged to the load or grid. The architecture is mostly suitable for low cost and low power 

systems.  

The DC bus connection type PV system connects DC bus lines directly with batteries or 

indirectly with the bi-directional DC/DC converter. The indirect connection would reduce the 

system efficiency since two-level conversion is used for battery charging. While the direct 

connection would affect battery life-time and utilization sine the batteries involved in energy 

conversion.  

The AC line connection type PV system could charge the batteries from both the PV panel 

side and the grid side. Under the application of hybrid systems, the batteries can be charged from 

various electric sources as illustrated in Figure 4.5. Thus AC line connection provides a convenient 

and reliable auxiliary energy for the load with small battery capacity. And it is suitable for the 

application of PV involved uninterruptible power supply (UPS), unified power quality controller 

(UPQC), and so on.   

To improve the system efficiency and optimize the batteries’ charging and discharging 

progress, sometimes different architecture types are combined. For example, literature [111] 

combines the PV panel connection type and DC bus connection type. Literature [108] combines 

the AC bus connection with DC bus connection type. 
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Figure 4. 5 Architecture of battery integrated hybrid system 
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which exhibit a poor power factor due to the high current distortion, and large ripple in battery 

charging current with a bulky inductor, the newly developed PFCs with carefully designed current 

shaping and phasing have achieved close to power factor 1, better current quality with higher 

efficiency and lower THD. 
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Figure 4. 6 Topology-based classification of PFC 
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The topology-based classification can be illustrated as in Figure 4.6. 
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Each of the switching converter stages requires a separate controller, which increases the 

complexity and cost.  

Single stage PFC converters that integrate input current shaping, isolation and DC/DC 

functions in the same stage are attractive for low power area applications. The block diagram of a 

typical single-stage PFC is illustrated in Figure 4.7 (b). Because of shared controller and active 

switches, the single stage PFC converters have advantages in cost, size, efficiency, and reliability 

compared with double stage PFC converters. 

 

(a) 

 

(b) 

Figure 4. 7 Conventional two-stage PFC (a) and single-stage PFC (b) 
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4.4 Digital Control of Biflyback PFC Topology 

In recent years, many literatures about single stage PFC topologies have been published. 

Considering the electric isolation requirement, the flyback single stage PFC converters due to their 

simple circuit configuration and low component counts, have become attractive candidates for 

single stage PFC applications. The conventional topology of flyback PFC is illustrated in Figure 

4.8. The circuit consists of an uncontrolled rectifier bridge cascaded with a flyback converter. The 

flyback PFC converter has two operation modes: one mode is when the primary inductor of 

transformer is shorted and the energy is stored in the transformer. The other mode is when the 

magnetic energy stored in the transformer flows through the diode into the load. The input current 

can be made to be fully discontinuous, bounded by a sinusoidal envelop to generate a good current 

shaping. 

 
Figure 4. 8 Flyback PFC topology 

 

Figure 4. 9 Discontinuous input current waveforms of Flyback PFC 

 

However, this topology this topology suffers from high voltage and current stresses which 
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expressed as equation (4.1). 

opkin,s VnVV   (4.1) 

Moreover, because of the discontinuous input current waveforms illustrated in Figure 4.9, the 

peak current stress on the switch is much larger than the analogous sinusoidal input current. 

Single stage Biflyback PFC that combines the advantages of single stage PFC and flyback 

topology, with its advantages of low intermediate bus voltage and current stresses [118], is adopted 

in this chapter. The topology of Biflyback PFC is shown as Figure 4. 10.  

The circuit consists of two flyback circuits connected together with shared switch S and 

output circuit. The first flyback is constructed with a rectifier bridge, diode D, transformer T1, 

switch S and diode D1. And the second flyback circuit is constructed with bus capacitor Cs, 

transformer T2, and diode D2. The operations of these two flyback are intermingled with each other, 

and play different function roles in the PFC. Generally speaking, the first flyback transformer T1 in 

the PFC cell operates in DCM to obtain high power factor, while the secondary flyback 

transformer T2 in DC/DC conversion cell operates in CCM to reduce the current stress and achieve 

tight output voltage regulation.  

 

Figure 4. 10 Biflyback PFC topology 
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4.4.1 Operation Principle 

To simplify the analysis, the following assumptions are made first: 

 No leakage inductance or resistance in two transformers 

 VCs (voltage across storage capacitor) and output Vo are constant 

 All switch components are ideal 

 Input voltage is constant during each switching cycle 

 
(a) 

 
(b) 

 
(c) 

Figure 4. 11 Biflyback PFC equivalent circuit under different periods: (a) Equivalent circuit during 

S ON period (b) Equivalent circuit during S OFF period under flybcak mode (c) Equivalent circuit 

during S OFF period under boost mode 
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(a) 

 
(b) 

Figure 4. 12 Operation key waveforms: (a) under flyback mode (b) under boost mode 

 

When switch S is ON, the equivalent circuit of Figure 4.11 is shown as Figure 4.12(a). The 

primary magnetic inductor L1 of transformer T1 is charged by the rectifier bridge, while the 

primary magnetic inductor L2 of transformer T2 is charged by capacitor Cs. The secondary side 

current of both transformers are blocked individually by diodes D1 and D2. Thus the load power is 

supplied by capacitor Co independently. The key waveforms of operation of this period are 

illustrated as Figure 4.12 (a) and (b) in interval [t0~t1]. 

The state equations of this period can be expressed as (4.2). 
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When switch S is off, the operation has two working modes depending on the instantaneous 

value of input voltage. The operation modes over one line cycle are illustrated as in Figure 4.13. 

 

Figure 4. 13 Operation modes during one line cycle 

 

The boundary time for two modes can be calculated with equation (4.3). 
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 (4.3) 

Where  refers to the angular frequency of input voltage, and Vin,pk refers to the amplitude of input 

voltage. 

4.4.1.1 Flyback Mode 

When the rectified voltage |Vin| is smaller than voltage VCs+n2Vo-n1Vo, the input current 

could be blocked by diode D. The magnetic energy stored in transformers T1 and T2 during ON 

period would transfer to electric energy at the secondary sides and flow to the output load through 

diode D1 and D2 individually. Thus both T1 and T2 operate as flyback transformers. The equivalent 

circuit of this mode is illustrated as in Figure 4.11(b). The key waveforms of operation of this 

period are illustrated as interval [t1~t3] in Figure 4.12 (a).  

In interval [t1~t2], the state equations of this period can be expressed as (4.4). 
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When the secondary current of transformer T1 has decreased to zero, the diode D1 will block its 

increasing in the negative direction. And the secondary current of T2 will keep decreasing until the 

switching cycle ends. This period is illustrated as interval [t2~t3] in Figure 4.12(a). 

4.4.1.2 Boost Mode 

When the rectified voltage |Vin| is larger than voltage VCs+n2Vo-n1Vo, the input current flows 

through diode D to charge capacitor Cs. Because of this current, the secondary side current of T1 is 

blocked by diode D1. Thus the primary winding of the first transformer T1 operates as a boost 

inductor. Energy stored in T1 would divide into two parts. One part flows through L2 to charge 

intermediate bus capacitor Cs and the other transfers through T2 to the output side. Whereas T2 

operates as flyback transformer, and magnetic energy stored during ON period would transfer to 

electric energy and flow to the output load through diode D2. As the voltage across L1 is negative, 

current in this boost inductor would decrease to zero, and diode D would prevent the current from 

going negative. The equivalent circuit of this mode is illustrated in Figure 4.11(c). The key 

waveforms of operation of this period are illustrated as interval [t1~t3] in Figure 4.12 (b). The state 

equations of this period can be expressed as (4.5). 
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4.4.2 DSP Control Design Analysis 

In the controller design of Biflyback PFC converter, as discussed in [118], the conventional 

analog control strategy is illustrated in Figure 4.6. 

 

Figure 4. 14 Conventional control strategy of Biflyback PFC 

 

The output voltage Vo is sensed and compared with a reference value Vref, then with PI 

regulation a reference current value is generated. With triangle carrier frequency determining the 

switching frequency, the duty cycle is determined by the comparator between the reference current 

generated with voltage loop and the peak current sensed in switch S1. Compared with conventional 

flyback PFC, where the reference current is generated by multiplying voltage PI regulator output 

with the quasi-sinusoidal voltage after the diode bridge for current shaping function, the controller 

shown in Figure 4.14 depends completely on the automatic PFC effect of DCM operation of T1. 

The controller focuses on achieving tight output voltage regulation and thusly could not realize 

good effect in input current shaping. 

Analysis is carried out in this chapter to provide further research on current shaping. The 

input current is the same as the current in the primary side of transformer T1. 

 

+

Vo

-

Vin

S1

D

D1

D2
T1

T2

n
1
:1

n2:1

Cs

+
VCs

Co RL

|Vin|

PI controller

Vref

Vo

err
PWM



130 

 

4.4.2.1 Flyback mode 

Based on the analysis in the last section, as illustrated in Figure 4.12 (a), the average input 

current of a switch cycle is calculated with equation (4.6)      
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(4.6) 

4.4.4.2 Boost mode 

As illustrated in Figure 4.12(b), the current iL1 decreases to zero at time t2, which can be 

calculated with equation (4.7) 
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Average input current of a switch cycle is calculated as equation (4.8)    
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(4.8) 

It can be seen from (4.8) that in order to keep a linear relationship between average input 

current and input voltage, 
|V|VnV

VnV
D

ino2cs

o2cs2




should be kept as constant, which means D 

should have a linear relationship with 
o2cs

ino2cs

VnV

|V|VnV




as shown in (4.9). 
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  (4.9) 

If k is the constant value of the duty cycle in the flyback mode, then the duty cycle of 
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o2cs

ino2cs

VnV

|V|VnV
k




 in boost mode can keep the same linear relationship between input current 

and input voltage as in flyback mode. 

Power factor correction shapes the input current, which ideally emulate a pure resistor load to 

the power network. 
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Req can be gotten from energy balance 
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Combining (4.10) and (4.11) with (4.6) and (4.9), the duty cycle that can guarantee input 

current shaping is shown in (4.12) 
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The derived expression of D in equation (4.9) is implemented in the digital controller in order 

to calculate a required D value that assures power factor correction in both flyback and boost 

modes. The output of D calculator block is multiplied with the output of the voltage loop PI 

controller, to give out a finial PWM signal controlling the switch S1 shown as Figure 4.15. 

In Figure 4.15, the final duty cycle signal given into the PWM module is generated by 

multiplying D calculator together with PI controller of voltage loop. It could be comprehended as 

follows: During practical usage, output power Po is always changing. PI controller gives the duty 

cycle that is required by output power Po and reference voltage Vref, while D calculator gives the 

weights of two different working modes in one line cycle to adjust the duty cycle produced by the 

PI controller and obtain a better power factor. As equation (4.12) is only used for producing the 
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adjusting weights of different working modes, Po can be carried out from (4.12) and given into the 

PI controller to produce the duty cycle. As the PI controller is flexible and stable for various output 

power, the control strategy should also work during different output power.  

In the conventional control strategy of biflyback PFC illustrated in Figure 4.6, the current 

sensing of switch S1 is required, which increases the circuit complexity.  

 

Figure 4. 15 DSP control strategy of biflyback PFC 

 

The digital controller illustrated in Figure 4.15 achieves output voltage and line current 

regulations by means of adaptive digital algorithm to optimize the current and voltage loops within 

the line cycle and without input current sampling. 

4.4.3 Steady State Analysis 

When the whole biflyback system reaches a steady state, output voltage Vo is supposed to 

reach a constant value. The average current in L2 of a line cycle must keep a constant value, thus 

the average duty cycle of a line cycle can be given as: 
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From equation (4.12) and Figure 4.7, it is obvious to see that the real duty cycle can not be 

always kept as constant as the average duty cycle shown in equation (4.13). It is changing around 

+

Vo

-

Vin

S1

D D2
T1

T2

n
1
:1

n2:1

Cs

+
VCs

Co RL

|Vin|

PI controller

Vref

err

D calculator

PWM

Vo



133 

 

the average duty cycle. If 
o2cs

o2

VnV
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 , it is possible that T2 operate under DCM. During boost 

mode, if current in L2 reaches zero before current in L1 reaches zero, secondary inductance of T2 

and capacitance of D2 would compose an oscillating circuit, which would prevent current in L1 

from decreasing. And T1 may enter CCM mode, which will break the deduction presumption of 

equation (4.12). However if current in L2 reaches zero after current in L1 reached zero, there will 

be no affection on T1 and deduction of equation (4.12). Thus to ensure T1 works under DCM 

during boost mode, it is very important to keep  
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To keep T1 works under DCM during flyback mode: 
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Suppose tx is the mode boundary which divides the flyback mode and boost mode, for power 

balance 
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Take equation (4.6) and (4.8) into (4.17) 
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It is obvious to see from equation (4.20) that with the increasing of output power Po, the 
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intermediate capacitor voltage VCs will tend to decrease. With equation (4.14), we know that output 

power has a maximum limit with any fixed system and fixed input voltage to keep T1 operates 

under DCM. As duty cycle is keep changing every duty cycle, and expression of D given by 

equation (4.12) is deduced from power balance, it cannot be combined with equation (4.18) which 

is also deduced from power balance to calculate and set up system parameters. But if the duty cycle 

is assumed to be constant expressed as equation (4.13), when input voltage Vin is given, output 

power Po, output voltage Vo and intermediate capacitor voltage VCs could be calculated based on 

(4.18) to give a direction in the whole parameter design.  

4.4.4 Simulation and Experiment Results 

A simulation prototype is built up using Matlab Simulink to test the proposed control 

algorithm. Parameters of simulation system are set as below: 

Input: 110Vac, Output: 20Vdc @100W, Switching frequency: 100kHz 

The main components: Intermediate capacitor 150uFCs   

T1 primary inductance 90uHL1  , turn ratio  6n1   

T2 primary inductance 600uHL2  , turn ratio 3.5n2   

 
Figure 4. 16 Waveforms of input voltage and input current under Vin,rms=110V, and Po=30W 

t/s

Vin/V

0

50

100

-50

-100

Iin/A

0

1

2

-1

-2

Vin

Iin

0.10.080.060.040.020



135 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. 17 Waveforms under Vin,rms=110V, and Po=100W : (a) Input voltage and input current 

(b) Duty cycle (c)IL1  
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Figure 4. 18 Waveforms IL1 under Vin,rms=85V, and Po=100W 

 

The simulation waveforms are illustrated as Figure 4.16~Figure 4.18. 

One prototype with topology shown as Figure 4.10 is built up and tested in practice. The 

design parameters, tested voltage range and power range are  

Input: 85~135Vac, Output: 20Vdc @20~100W, Switching frequency: 100kHz 

The main components: Intermediate capacitor 150uFCs   

T1 primary inductance 90uHL1  , turn ratio  5n1   

T2 primary inductance 600uHL2  , turn ratio 3n2   

 
Figure 4. 19 Primary side current of T1 and duty cycle waveforms @100W with 110V input 

Top:duty cycle(0.2/div) Bottom: current (2A/div) Timebase: 2.00ms/div 
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power is increasing from 20W to 100W. Input current and duty cycle waveforms at 100W output 

power with 110V input voltage are shown as Figure 4.19. The waveforms have similar shape as in 

simulation (shown as Figure 4.17(a) and (b)).  

 
Figure 4. 20 Primary side current of T1 @100W with 85V input voltage 

 

Power factor values at different input voltage and output power are read directly from source 

machine, which is illustrated as in Table 4.1. 

 

Table 4. 1 Power factor values under various input voltage and output power 

Iin (A) 

Vin(V) 
1 2 3 4 5 

85 98.3 98.5 98.7 98.1 94.5 

110 99.4 98.1 99.2 98.2 97.3 

135 98.7 99.1 99.3 98.7 97.4 

 

Power factor drops suddenly at 100W with 85V input voltage is because the current in L1 

enters CCM zone at peak input voltage, as illustrated in Figure 4.20. 

4.5 Snubber Cell Design for Low Power PFC 

In the single stage PFC converters, for the requirement of isolation, a transformer is usually 

cascaded with a DC/DC converter. The leakage inductor of the transformer would cause a high 

voltage spike on the switch during the turning off periods. This voltage spike increases voltage 

stress on the switching device extensively, which would increase switching losses. With higher 
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voltage duration switch selection conduction losses would increase as well. To reduce the voltage 

spike, a snubber circuit design is necessary.  

In recent years, many soft switching techniques and snubber techniques have been proposed 

for PFC converter [119-121]. However, few of them include both functions in one cell. In this 

section, a new snubber cell combining soft switching technique with snubber technique  is 

proposed, moreover this snubber cell can be implemented generally to all isolated single-stage 

PFC with a boost type input shaper. Besides these topology advantages, the auxiliary switch and 

the main switch share the same PWM signal which also simplify the control scheme. Operation 

principle of the soft switching technique is analyzed in detail, and parameters design is discussed 

theoretically. 

4.5.1 Operation Analysis 

 
(a)                                  (b) 

 
(c) 

Figure 4. 21 (a)proposed snubber cell, (b)proposed snubber circuit for Biflyback PFC converter, 

(c)proposed snubber circuit for BIFRED PFC converter 
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Figure 4.21 presents the new active snubber cell and its applications in both Biflyback and 

BIFRED topologies as examples. The main switch S1 and the auxiliary switch Sr share the same 

PWM signal. To simplify the operation analysis, assume that the capacitor Cs is large enough; 

therefore the voltage across this capacitor can be represented as a constant value VCs. Take the 

Biflyback topology as an example to analyze the operation principles of the snubber cell. Assume 

that the whole PFC converter system has achieved a steady status. Operation of the snubber cell 

can be divided into three stages as illustrated in Figure 4.21. The detailed analysis follows. 

 
(a) 

 
(b) 

 
(c) 

Figure 4. 22 various operation stages during one switching cycle: (a) <stage 1>, (b) <stage 2>, (c) 

<stage 3> 
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Stage 1[t0-t1]: As illustrated in Figure 4.21 (a), during this stage both switches S1 and Sr are off. 

Since the Biflyback PFC converter has two operation modes: boost mode and flyback mode; if the 

converter operates under boost mode, leakage current of the transformer T1 flows through the 

diode Dr1 to charge the capacitor Cr, otherwise the converter operates under flyback mode, leakage 

currents of both transformers flow through Dr1 to charge Cr1. The diode Dr1 and Dr3 are both off 

since no currents flow through them. The key waveforms of this stage are illustrated as Figure 

4.14. 

 
(a)                                                (b) 

Figure 4. 23 Key waveforms of snubber cell 

 

Stage 2[t1-t2]: Both switches S1 and Sr are turned on during this period whereas the diodes Dr1 

and Dr3 are blocked by the reverse voltage across them individually. Energy stored in the capacitor 

Cr during stage 1 are discharged through the inductor Lr and the diode Dr2 to charge Cs. When the 

voltage VCr is larger than VCs, current iLr increases, and when the voltage VCr drops below VCs, iLr 

decreases. During this period, diode Dr1 would prevent VCr from going negative, and Dr2 would 

prevent iLr from going negative.  

Stage 3[t2-t3]: If iLr reaches zero before the turning off of switches, stage 3 would be 

illustrated as in Figure 23 (a), iLr and VCr would keep zero until the next turning on signal arrives. 

Otherwise, stage 3 would be illustrated as in Figure 23 (b) and Figure 22 (c). S1 and Sr are turned 
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off; iLr flows through Dr2 and Dr3 to keep charging Cs until iLr decreases to zero. Dr2 and Dr3 would 

block iLr from going negative. On the other side the leakage currents are charging Cr as analyzed in 

stage 1. 

4.5.2 Parameters Design 

To ensure the soft switching conditions, observing from Figure 4.22 and Figure 4.23, two 

requirements have to be pre-satisfied: VCr has to achieve zero during the turn-on period, and iLr has 

to achieve zero before the end of the turn-off period. The second requirement is easy to meet 

because of the freewheeling diode Dr3. To satisfy the first requirement, parameters’ design for the 

snubber circuit should be systematically analyzed. 

For stage 2,  
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Assume that at the beginning of the turn-on period,  
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and before the end of the turning-on period, the voltage VCr should decrease to zero 

0)(tV xCr  ( onx tt  ) (4.23) 

Take (4.22-4.23) as boundary restriction for equation (4.21), it is directly to derive equation 

(4.24) 
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Since the voltage VCr has to achieve zero during the turn-on period, among (4.24), the 

amplitude Vcon should be greater than VCs, and Vcon is larger, the voltage VCr is decreasing faster to 
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zero. And for the current iLr, in order to reduce the current stress on auxiliary diodes Dr1 and Dr2, Lr 

is preferred to be larger and Cr is preferred to be smaller.  

To get further restriction for parameters selection, consider the charge balance. The electric 

charge stored on the capacitor Cr is charged by the leakage current  

 dti)V(VC leakCsconr  (4.25) 

Every time the main switch turns off, the leakage current charges the capacitor Cr until it 

decreases to zero. Assume the initial leakage current is I0, and the leakage inductor is Lleak, 

rleak

0
Csconr

CL2π

I
)V(VC   (4.26) 

For the Biflyback PFC converter system, when the system works under boost mode, the 

leakage current is mainly supplied by the second transformer T2, 
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where L2 stands for the primary side inductance of T2; D stands for the duty cycle, and T 

stands for the switching cycle. When the system works under the flyback mode, the leakage 

currents are supplied by both transformers 













2

Cs
02

1

in
01

L

DTV
I

L

DTV
I

 (4.28) 

where L1 stands for the primary side inductance of T1. For the flyback mode, the charge 

should be calculated separately for each transformer and added together. Consider practical 

operation conditions, the leakage inductance is usually less than 5% of the transformer inductance. 

Combining all these restrictions above, values of Lr and Cr could be appropriately selected. 
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4.5.3 Simulation and Experiment Results 

A simulation Biflyback prototype is built up using Matlab Simulink to test the proposed 

snubber cell. Parameters of the simulation system are set as below:  

Input: 110Vac, Output: 20Vdc @100W, Switching frequency: 100kHz 

The main components:Intermediate capacitor 150uFCs   

T1 primary inductance 90uHL1  , turn ratio  6n1   

T2 primary inductance 600uHL2  , turn ratio 3.5n2   

The simulation waveforms are illustrated as below. leakage inductors are 5% of primary 

inductors for individual transformers; Switching frequency: 100kHz. The auxiliary components: 

4.4nFCr  , 35uHLr  .  

 

Figure 4. 24 Simulation waveforms of the snubber cell with application in Biflyback PFC 

 

Waveforms of Figure 4.23 illustrate the same characteristics as analyzed in Figure 4.24. The 

prototype of BIFRED PFC converter is also built up with simulink, simulation waveforms are the 

same as Figure 4.24. 

The biflyback PFC prototype built in the former sections is used to carry out the experiments. 
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The experiment results are measured when the input voltage is 80Vac, and the output power is 

20Vdc @50W. 

The key waveforms are illustrated as in Figure 4.25 (a), which is similar with the simulation 

waveforms provided in Figure 4.24. Thus the main switch operates under ZVS during turn-off 

transitions, whereas the auxiliary switch operates under ZCS on both turn-on and turn-off 

transitions as expected in parameter design section. 

 
(a) 

 
(b) 

Figure 4. 25fExperiment waveforms of snubber cell under different PFC topologies: (a) Biflyback 

PFC (b) BIFRED PFC 

 

By disconnecting the secondary side of the transformer, a BIFRED PFC converter is 

constructed from the Biflyback PFC converter, and experiments are also carried out on the 
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converter. Key waveforms illustrated in Figure 24 (a) are measured when the input voltage is 80Vac, 

and the output power is 25Vdc @50W, which also confirms the practicability of the proposed 

snubber cell. 

4.6 Summary 

The simplest PV power system is to connect the PV panel directly with the load. To satisfy 

various practical application requirements, different equipments are added into the system to 

increase the complexity and construct various system architectures. Because of the nature of the PV 

source characteristics in generating intermittent and unpredictable power, which has to deal with 

fluctuated load demands, energy storage is provided to the system to optimize the dispatching of 

power and increase the power quality and stability of the PV system. Among all these energy 

storage techniques, batteries are by far the most common means used for energy storage in PV 

systems. Classified by the different connection locations, energy storage integrated PV systems can 

be divided into three groups: PV panel connection type, DC bus connection type and AC bus 

connection type. In the AC bus connection type, PFC is required to convert AC source into DC 

source and charge the batteries. 

In this chapter, a single stage single switch biflyback PFC converter is proposed with a digital 

controller. Compared with the analog controller in [118], the digital controller can achieve a better 

PFC without a current sensing circuit required. The operation principle and digital control design 

are analyzed in detail. Simulation and experiment results are provided to prove the analysis. To 

deal with the voltage peak during turn off period caused by the leakage inductor, a snubber circuit 

is proposed. The snubber cell cannot only clamp the scale, but also provide a soft switching to the 

main switch. Moreover, no additional PWM is required since the auxiliary switch could share the 

same PWM with the main switch. The operation principle and digital control design are analyzed 

in detail. Simulation and experiment results are provided to prove the analysis.   



146 

 

CHAPTER FIVE: CONCLUSIONS AND FUTURE WORKS 

5.1 Conclusions 

Photovoltaic (PV) panels convert solar energy into electric power. Voltage and current at PV 

terminals have a complicated nonlinear relationship depending on the environment temperature 

and irradiance. To best regulate the available power from the PV panels, several power electronic 

technologies have been developed in recent decades.  

In this dissertation, AC PV module which can directly provide ac power to the grid is 

selected to carry out the PV power conversion system. Micro-inverter as a main component of 

AC PV module is carefully studied to achieve high power density, high power efficiency and 

optimum electrical quality. 

In numerous micro-inverter topologies, the dual stage inverter structure is selected in this 

thesis. In dual-stage inverters, the DC voltage rising circuit and DC/AC voltage inverting circuit 

would be decoupled, while the MPPT function and bus voltage balance function would be 

separated as well. Thus the circuit design and controller design would be much simpler compared 

with single stage inverter. Compared with three stage inverters, the dual stage inverters have a 

better power efficiency and fewer components for less energy processing stages.  

For the first DC/DC stage of the dual-stage inverters, the resonant converter topologies are 

suitable candidates. As the resonant nature can generate soft switching conditions for all switches, 

switching frequency could be increased, while power density and efficiency could be increased as 

well.  

The MPPT function is realized in the DC/DC stage. However the performance of the resonant 
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converter depends upon not only circuit parameters, but also operation conditions, which are 

difficult to determine with load and input voltage variance. In chapter two, analysis is made based 

on the frequency modulation for various resonant converters (including the series resonant 

converter (SRC), the parallel resonant converter (PRC), the series-parallel resonant converter LCC 

(or SPRC), LLC resonant converter and LCLC resonant converter). Conclusions about whether or 

not they are suitable to carry out MPPT with frequency modulation are discussed respectively for 

each topology. Since the power frequency (P-F) waveforms of various resonant converters are 

different from each other, conventional MPPT might fail for some P-F waveform. To solve this 

problem, a novel center points MPPT is proposed. A LLC converter prototype is built for the 

verification of the proposed MPPT. Experiment waveforms prove the effectiveness. Moreover, 

compared with conventional MPPT, the proposed MPPT have advantages in fast tracking speed 

and little oscillation power loss. To expand the applications of the proposed MPPT, simulations 

on other resonant converters are also carried out, and experiments on LCLC prototype are 

practiced. The waveforms and results show the same characteristics as theory analysis.    

For the second DC/AC stage of the dual-stage inverters, the soft switching techniques are 

required to improve power efficiency and power density. The active soft switching techniques are 

reviewed in chapter three. All of them require additional components to construct a high-frequency 

resonant network around the main switches. During their commutations the resonant network 

operates for a very short period to create ZVS or ZCS conditions for the main semiconductors. 

Chapter three proposes a novel ZVS technique without auxiliary components. The operation 

principle and modulation schemes are analyzed in detail. Controller applied with DSP is provided 
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with analysis. Simulation and experiment results verify the feasibility of the proposed ZVS 

technique. 

As the available power generated by PV panels are time varying and circumstance dependent, 

power load can fluctuate considerably and changes occur within minutes or seconds. To balance 

the requirements from fluctuated load and intermittent source, energy storage is introduced into the 

PV system. Thus in some PV system applications, electric power from grid or other source (for 

example: batteries) is provided to the load when PV power is insufficient. In these cases, the 

usages of PFC converters are required.  

Chapter four provides a review on the PFC topologies. A single stage biflyback PFC is 

selected for small power application because of its advantages in voltage and current stresses and 

simplicity in topology. In former analog controllers of the biflyback PFC, the voltage loop for 

voltage regulation is realized with a PI controller, while the current loop for input current shaping 

is dependent fully on the DCM automatic power factor correction function, with peak current 

restriction provided to the main switch. In chapter four, a DSP controller is provided for regulation 

input current shaping based on mathematical analysis. The new controller is simple in control and 

does not need current sensing, which saves cost in advance. Simulation and experiment results 

illustrate the effectiveness of the proposed controller.  

To deal with the peak voltage caused by leakage inductor of transformers in the single stage 

PFC, a snubber cell is provided. As analyzed in chapter four, it has a wide application range in all 

boost type input current shaper PFC. The auxiliary switch in snubber cell shares the same PWM 

signal with the main switch, which does not need any additional controller circuit. The operation 
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principle is discussed carefully. The prototypes of the snubber cell are built on the Biflyback PFC 

converter and the BIFRED PFC converter individually. Experiment waveforms prove its 

practicability. 

5.2 Future Works 

Based on the V-I relationships of various resonant converters calculated in chapter twothere 

are some voltage and current which could not be arrived at by these resonant converters. Thus to 

ensure the MPPT could successfully find the real maximum power point (MPP) of the PV panel, 

the parameters of resonant converters should be designed carefully based on the possible MPPs 

regions. Thus further calculations and analysis are required to optimize the design for every 

resonant converter. 

For the ZVS technique proposed in chapter three, the switching frequency varies in a huge 

range, which would increase the complexity of EMI design. Moreover, the large switching 

frequency range also is an obstacle in decreasing inductor volume and increasing power density. 

Further study is required to solve this problem in deriving new topology or novel control schemes. 

Further research can focus on narrow down the frequency range without sacrificing the power 

efficiency. 
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