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INTRODUCTION

494

Modern power electronic systems are rarely designed without inductors or transformers.
Because of the importance of these components, understanding magnetic and magnetic
circuits is necessary for the successful design of power electronic systems. Moreover, if
not included as discrete components, inductors exist as parasitic components, especially
when the power systems are operated at high frequencies. Normally, the magnetic com-
ponents are the most expensive and difficult to design in power systems.

Inductors are used to accomplish one or more of the following functions:

1. Filter switch waveforms, at both the input and output sides.

2. Form resonant circuits along with capacitors in order to create sinusoidal
waveforms for various applications.

3. Limit the rate of change of load currents in switching circuits.

4. Limit transients at power-up of electric systems.
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A transformer may be considered as two inductors coupled through a shared mag-
netic circuit with common flux. Because of this common flux, it is possible to change
the ac electric energy at a given voltage level to another voltage level (same form of
energy) with high efficiency. Transformers, whether operated at line or higher fre-
quencies, are used to accomplish one or more of the following functions:

1. Step up or step down the voltage to service various needs and applications.

2. Provide isolation between power systems to reduce various EMI problems and
for safety considerations.

3. Provide phase shift in multiphase systems to generate systems with three or
more phases.

4. Provide a means to store energy to be utilized at later times, especially in high-
frequency applications.

5. Provide a coupling mechanism between the gate or base drive circuits of high-
power semiconductor switching devices and the power circuits in various
power electronic systems.

6. Provide sensing for voltage and/or current in various control feedback systems.

Because of the wide variation of parameters that characterize magnetic circuits
(inductors and transformers), it is extremely difficult to standardize the size, values,
and ratings of inductors and transformers. As a result, stockpiling such components is
highly impractical and normally not done. Among the parameters that characterize
magnetic components are current, voltage, and power ratings; energy storage and dis-
sipation; frequency of operation; magnetizing and leakage inductances; turn ratio;
fabrication difficulties; size; weight; and cost. An attempt to minimize one or more
components will be done at the expense of one or more other parameters. As a result,
designing magnetic circuits is a very tricky and challenging engineering problem, and
experience plays a very important role.

A.1 TYPES OF MAGNETIC MATERIALS

Just as the types of conductors in electric circuits are identified based on their ability
to conduct electric current, the types of magnetic materials are identified based on
their degree of receptivity to the magnetic field. A good conductor allows the current
to flow freely, and a good magnetic material allows the magnetic field to pass through
freely. Even though the two materials experience totally different physical phenomena
in the process, many of the concepts applied to electric circuits can be also identified
with magnetic circuits. This analogy will be discussed in more detail in Section A.4.

Depending on the degree of magnetization in the presence of an electric field,
magnetic materials are divided into three major groups:

1. Diamagnetics: These materials experience extremely weak magnetization in
the presence of magnetic fields, i.e., they exclude magnetic fields. This prop-
erty is similar to the property of insulators in electric circuits.

2. Paramagnetics: These materials experience slight magnetization. This prop-
erty is similar to the conductive property of semiconductor materials in electric
circuits.

3. Ferromagnetics: These materials experience strong magnetization in the presence
of magnetic fields. This property is similar to the property of a good conductor
material.
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A single parameter that characterizes the property of magnetic material, therefore,
its type, is known as the permeability, u, which is expressed in the following constitu-
tive relation:

B = uH (A1)

where
M is the permeability of the magnetic material
B is the magnetic flux density!
H is the magnetic field intensity

Normally, the value of w is identified relative to the permeability of the vacuum, w,,
as follows:

[ (A.2)

where
M, is the permeability of the vacuum
u, is the relative permeability of the magnetic material

Depending on the magnetic material, the value of u, can vary from a small frac-
tion of u, to thousands of w,. The following is a fairly accurate classification of
magnetic materials in terms of u,. :

u, < 1 for diamagnetic materials
m, =1 for the vacuum

u, > 1 for paramagnetic materials
m, >>1 for ferromagnetic materials

The value of w, is equal to 47 X 107 henrys/meter. For many applications, nor-
mally it is desired that a large magnetic field be produced with the smallest possible
current in the coil. As a result, materials with high w are desired. This also means that
a preponderant portion of the produced flux is confined to the magnetic material.

Ferromagnetic materials are normally obtained from iron with certain alloys such as
cobalt (Co), tungsten (Tn), nickel (Ni), aluminum (Al), silicon (Si), manganese (Mn), and
zinc (Zn) alloys. Alloys are selected based on several factors, such as maximum satura-
tion flux density, B,; operating frequency of the magnetic circuit; cost; and resistivity.

Both the conductivity and the frequency of operation affect the total energy losses
in the magnetic material, known as core losses. For example, the iron-silicon alloy
with low silicon content has relatively high losses and high B, whereas a high-silicon
content material is more expensive and has reduced core losses. As a result, the latter
material is used mostly in high-efficiency line-frequency applications, and the former
material is used when cost is the determining factor. For high-frequency applications,
high-permeability magnetic material is used, such as iron with Ni alloy, with rela-
tively low B,. However, for higher saturation flux density, Co alloys are used. Com-
pared with the Si alloys, Co and Ni alloys are more expensive.

In power electronic systems, operating frequencies in the several megahertz range are
commonplace. A special ceramic known as ferrite, made from various combinations of
iron with Mn, Ni, and Zn alloys, has been very popular in the design of magnetic circuits
in power electronics. For example Mn-Zn and Ni-Zn ferrites are used in power electronic
applications with frequencies in the range of a few to tens of megahertz, respectively.

IBoldface letters indicate vector quantities.
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A.2 MAGNETIC FIELDS

As you may recall from the study of electromagnetic fields, Maxwell’s equations form
the basis of the fundamental theory of electromagnetism, governing the relationship
between the strength of electric (E) and magnetic (H) fields, and the electric (D) and
magnetic (B) flux densities. In this section, we focus on only two of Maxwell’s equa-
tions as they relate to magnetism. Maxwell’s equations (A.3)? and (A.4) governing the
magnetostatic field B and H are given by

VxH=1J (A.3)
V-B=0 (A.4)

where J is the current density in amperes per square meter, and the symbol V repre-
sents the partial-differential operator; V X H is called the curl of H, and V- B is
called the divergence of B. Equation (A.3) is known as Ampere’s law, and Eq. (A.4)
is known as Gauss’s magnetic law. Notice that as charge is the source of the electro-
static field, current is the source of the magnetostatic field.

Since our interest in this appendix is to derive magnetic fields resulting from a
current-carrying wire wound around a core of magnetic material, Maxwell’s equations
in this form are not useful. It is normally more convenient to use different forms of
Maxwell’s equations to solve for the magnetic field under these circumstances. It can
be shown, by using Stokes’s theorem, that Eq. (A.3) may be expressed as follows:

fj; H~dl=JJ-dS (A.5)

The left-hand side gives the integration of the magnetic field along a closed contour
C, and the right-hand side gives the total current density, J (J =J, +J,+ - +J,),
flowing through the surface area, S, enclosed by the contour C as shown in Fig. A.1. It
is possible to simplify Ampere’s law further by assuming the current is confined to a

Ji

Surface area (S)

Iy
Figure A.1 Current density
=3, +d,+J;+-+J)
/A passing through area S enclosed by
Closed contour (C) contour C subject to the integral of

Eq. (A.5).

2Maxwell’s equation (A.3) is based on the electrostatic field; i.e., the electric field does not vary with time.
In time-varying magnetic fields, an additional term, known as displacement current, is used in this equa-
tion, to form VX H = J + dD/d¢ . Here, the displacement current will be assumed negligible since its
contribution is significant only at extremely high frequencies.
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Figure A.2 Infinitely long wire
conducting current i. (@) The
magnetic field surrounding the
wire. (b) The direction of the

0 magnetic field at a distance of
radius 7. (¢) The magnetic field
(b) (©) versus distance from the wire.

wire rather than being distributed over a region in space. Consequently, the right-hand
side gives i, where i is the total current flowing in the wire. Moreover, if we assume
there are N wires each carrying the same current and encircled by the integral loop,
then Ampere’s law can be expressed as follows:

(jﬁ Hdl = Ni (A.6)
C

As an example, consider solving the above integral for an infinitely long wire car-
rying a current i as shown on Fig. A.2(a). The direction of the magnetic field is sub-
ject to the right-hand rule (the thumb is in the direction of the current and the fingers
are in the direction of the magnetic field). The notations @ and O indicate that the
current is flowing into and out of the paper, respectively.

To evaluate the integral, we apply Ampere’s law to a circle with radius » and
centered in the origin, as shown in Fig. A.2(b). A plot of the magnetic field versus
the radius is shown in Fig. A.2(c¢). It is clear that the magnetic field due to the current
decreases in the radial direction away from the conducting wire. The magnetic field
lines are called flux lines or simply the flux of the magnetic field, denoted by ¢, and
the amount of the flux or the density of the flux is defined as follows:

_¢
B=2 (A.7)

where
¢ is the flux in webers (Wb)
B is the flux density in Wb/m? or teslas (T)
A is the area through which the flux flows

A.2.1 Toroidal Structure

One of the important applications of magnetics to the field of power electronics is
when a wire is wound around a doughnut-shaped magnetic material to form what is

—®
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Figure A.3 Toroidal structure created by winding wire around doughnut-
shaped magnetic material.

known as toroid, as shown in Fig. A.3. This is not only because a large class of induc-
tors and transformers are manufactured with this structure, but also because the analy-
sis of such a structure can be easily applied to other magnetics with various
arrangements. We will apply Ampere’s law to the magnetic structure and solve for its
magnetic field.

When solving for H, we will assume that the permeability of the magnetic mate-
rial is much higher than that of air; hence, the entire magnetic field is assumed to be
confined within the toroid core. Also, it is accurate to assume that the flux density is
constant throughout the structure. Notice that H can be determined by taking the inte-
gral contour at the inner radius 7, or the outer radius r,. It can be easily shown that if
the radial dimension (r,—r,) is very small compared to r;, then H can be assumed
constant and to give a good approximation when evaluated over the mean radius
(r;+ry)/2. Applying Ampere’s law to a line integral with radius » and the circle
loop shown in the figure, we obtain

jﬁ H-dl=Ni

C

HJZWdHZNi
0

Solving for H, we have

-I= 5=

where r and / are the mean radius and length of the toroid, respectively.

The product Ni is normally referred to as the magnetomotive force (mmf), which
is the magnetic field potential difference tending to force flux around the toroid.
Moreover, by using the constitutive relation B = wH and the definition of B given in
Eq. (A.7), the flux in the magnetic material is given by

Nid

where A4 is the cross-sectional area of the toroid.
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EXAMPLE A.1

Consider a rectangular cross-sectional area of the toroidal magnetic core shown in Fig. A.4 with
r, =3.5cm,r, =4 cm,andaheightof 1 cm. Assume u = 2000, and B,, = 0.3 T. Determine:
(a) Maximum core flux before entering saturation

(b) The mmf required to produce this flux

(c) Number of turns that must be wound if the coil must carry 10 mA and still avoid saturation

“«—>
n-n

Cross-sectional area

Figure A.4 Toroidal structure of Example A.1.

SOLUTION (a) The cross-sectional area of the core is given by

A= (ry=r))h
=50x10"6 m2
The maximum flux is given by
¢ =BA
=15%x10% Wb
(b) To obtain the mmf, we must determine the mean length of the flux path, which is given by
I=2m rytr,
2
=2356%x102m
The mmf'is given by
mmf = kil
nA

_ (15x10°°)(23.56x 10 )
(2000 X 477X 10-7)(50 X 10~%)
= 28.125 A-turn

(c) From the value of mmf, the number of turns, &V, for i = 10 mA is 4.

A.3 MAGNETIC CIRCUITS

For many practical applications in power electronics, the design of special coil and
core configurations are performed to produce various magnetic fields. As stated ear-
lier, it is normally desirable to produce the maximum magnetic field with minimum
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magnetizing current in the coil. Because of the direct proportionality between current
and magnetic field density, an attempt to increase the magnetic field intensity will re-
sult in an increase in the coil current. However, because of the relation B = uH, it is
possible to increase the flux density by using material with high permeability com-
pared to the air permeability. As discussed in the previous section, these materials are
called ferromagnetics, from which almost all cores are made. Consequently, this
choice is based on the assumption that most of the flux is confined to the magnetic
material, with no flux flow in the surrounding medium, air or otherwise. This is be-
cause the flux will flow in a high w path rather than in the low w of the air. This phe-
nomenon is analogous to the way in which current flows in wires, which have a
conductivity much higher than the conductivity of the air. This observation, and oth-
ers to be made later on in this section, have led to new approaches to analyze magnetic
circuits. It has been customary to make this analogy between “electric circuits” and
“magnetic circuits” in order to simplify the analysis and design of magnetic circuits,
since electric circuits are well understood by electrical engineers.

Magnetic circuit analysis has proven useful in the design of inductors, transform-
ers, and other special magnetic devices. In electric circuits, based on Kirchhoff’s volt-
age and current laws (KVL and KCL), all branch currents and nodal voltages are
normally determined. In magnetic circuits, the following questions arise: How much
current is needed to magnetize or demagnetize a given core? What is the resultant
flux? When do we obtain maximum flux?

The analysis of magnetic circuits will be based on the following two Maxwell’s

equations:
jﬁ H-dl=Ni (Ampere’s law) (A.9)
o
<J; B-dS=0 (Gauss’s magnetic law) (A.10)
o

Equation (A.9) suggests that the total magnetic field in a closed path of length / must
equal the total applied magnetomotive force. In other words, we may consider the
right-hand side of this equation as a current source and the left-hand side as the result-
ant or induced mmf. This is analogous to state that the source voltage around a closed
loop equals the total resultant voltage (drop) in the same loop. This is like dealing
with KVL for mmf, rather than for emf.

Similarly, Eq. (A.10) suggests that the sum of the total magnetic flux, ¢, into a
closed region in space is equal to zero. This is analogous to KCL for ¢ rather than for
i. In other words, we may state that the sum of all magnetic flux into a small region
must be zero. It is obvious that the mechanism of the flow of flux in magnetic circuits
is similar to the way current flows in electric circuits.

To further illustrate the similarities between magnetic and electric circuits, con-
sider the equation for the flux derived in the previous section, namely:

b= ]%A " (A.11)
If we let a parameter known as reluctance R be defined as
_ 1
=i (A.12)
then the flux may be expressed as
Ni
= Al
¢=7 (A13)
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or

mmf = Ni

N (A.14)

Equation (A.14) reminds us of the way we define the resistivity for a conductor of
length /, cross-sectional area 4, and conductivity o
R= L (A.15)
oA
Moreover, Eq. (A.14) is similar to Ohm’s law relating voltage drop to the resistor and
current. Just as the resistance opposes the current flow in the conductor, the reluctance
opposes the flow of the flux in the magnetic circuit.
The flux linkage is normally defined by

A=N¢ (A.16)

and the inductance is defined as

L= (A.17)

1>

In terms of magnetic circuit geometry, L can be written as

L= “Asz (A.18)
It is also customary to express the flux using the following relation:
¢ =PNi (A.19)

where P is known as the permeance. In terms of the reluctance, the permeance is
given by

P=1/R (A.20)

Table A.l summarizes the analogy between the electric and magnetic circuit
parameters.

Table A.1 Analogy between Magnetic and Electric Circuits

Electric circuits Magnetic Circuits
Electromotive force (emf) (volts) Magnetomotive force (mmf) (Vi)
Current (1) Magnetic flux (¢)

Voltage drop (volts) Magneto volts (H/)

Resistance, R Reluctance, R

Current density, J = I/ A4 Flux density, B = ¢/ 4

KVL for emf KVL for mmf

KCL for currents KCL for flux

Conductance, G = 1/R Permeance, P = 1/R
Conductivity, O Permeability, w

Conductors Ferromagnetics

Insulators Diamagnetics




N
%\é | 635 BatAppA.fm Page 503 Friday, February 28, 2003 3:16 PM

A.3  Magnetic Circuits 503

EXAMPLE A.2

Consider a rectangular core with a winding N that turns as shown in Fig. A.5. Assume the
cross-sectional areas of the side and top/bottom segments of the core are 4, and 4,, respec-
tively. Develop the electric circuit equivalence and determine the reluctance, flux, and induc-
tance of this configuration.

!_ ''''''''' ! A
i i
o——) !
| I
v TP i
D |
o | |
[ Jv
——hb—> Figure A.5 Magnetic structure for Example A.2.

SOLUTION Since the permeability of the core is much higher than that of the air, we assume that the
entire flux produced by Ni is confined to the core. There are four segments (legs) in this core:
the side segments, of the same reluctance R, and the top/bottom segments, also of the same
reluctance R, . The coil and the excitation current are represented as an electromotive source,
as shown in Fig. A.6.

N

VW

Ni § Ny

Figure A.6 Equivalent electric circuit of Fig. A.5.

The reluctances R, and R, are given by
21
boud,
A
P opd,

where /; and /, are the mean lengths of the core as shown in Fig. A.5, and w is the permeability
of the core.
The flux produced in the winding is given by

_Ni
¢ - %T
where R, = R, + R, and the inductance is given by
N2
L = —
%Ry
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EXAMPLE A.3

Figure A.7 shows a three-legged magnetic structure made of material with w = 3000w, .
Winding of N turns is placed at the center leg and an air gap of width /, is made in the right leg
with the dimensions shown. Develop an equivalent electric circuit and determine the flux and
the inductance of the winding.

6em P3€=—~_ -~
\/
o— 4
~ U
20 cm N =100 \r) ¢4Cm=1g
(N
o—i | D
6 cm ¢ K2
P>
6cm 18cm 12cm 18cm  6cm Figure A.7 Magnetic structure for
Depth =3 cm Example A.3.

N, %,
3
Ni N
® Figure A.8 Equivalent electric circuit of Fig. A.7.

SOLUTION As in Example A.2, it will be assumed w >> u, and the cross-sectional area of the air
gap is the same as the cross-sectional area of the core. (Neglect fringing effects, to be discussed
later.) The equivalent electric circuit is shown in Fig. A.8, where

R, = Reluctance of the center leg

R, = Reluctance of the right-leg core segment
R, = Reluctance of the left-leg core segment
SKg = Reluctance of the free space (air)

From Fig. A.7, we obtain the mean length for these reluctances:
l, =26 cm
l,=4cm
l,=2(27)+22 =76 cm
[;=2(27)+26 =80 cm

The cross-sectional areas of the center leg, 4,, and the remaining segments, 4, (including
the air), are given by

A, =36 cm?
A, =18 cm?
The reluctances are calculated as follows:
— ll
LA
=6.89 X 103
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_ Lk
SKg_l-’mAz
=1.77x 107
— 12
 ud,
=11.2x10*

_ b
pA,
=11.78 x 10*

The total flux in the center leg is calculated from

Ni
d’lzﬁ

2

3

= 0.62 mWb
where R, = (R, + R,) | Ry + R, =8.06x 105,
The flux in R, and R; is given by
R
b=
POTIR AR R,
=4.07 mWb
=t
R, + R, + R,
=0.616 mWb

The inductance of the winding is given by

L=n&
1
N
Ry
1241 mH

¢

505

As illustrated in the examples, the calculation of flux and inductance is straight-
forward and quite simple. Even though these calculations are approximate, they often
give satisfactory results. Some sources of inaccuracy in calculating the flux in the core

can be summarized as follows:

1. Leakage flux into the low-permeability surrounding air is not exactly zero.

This is because the conductivity of a current-carrying wire in an electric circuit
is higher than the conductivity of surrounding air by 12 to 15 orders of magni-
tude, whereas the conductivity difference between magnetic materials and the
surrounding medium is around 2 to 3 orders of magnitude. This is a fundamen-
tal difference between magnetic and electric circuits.

. In air-gapped cores, the cross-sectional area of the air is not quite that of the
core. This is due to the additional flux that exists outside of the volume
directly between the core segments, which results in an increase in the
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effective cross-sectional area of the gap. This phenomenon is known as the
fringing effect, and the flux is called fringing flux.

3. Due to the nonlinear nature of ferromagnetic material, its permeability is not
always constant under any current excitation. As a result, reluctances and, con-
sequently, inductances exhibit a nonlinear relation between the mmf and flux.
This is another fundamental difference between magnetic and electric circuits.

4. To simplify the evaluation of the closed-loop integral to obtain the magnetic
field density, it is assumed that the flux path is an average or mean length.
Even though the difference is not significant, it contributes to the error in the
calculations.

5. The magnetic field density and intensity are not uniform throughout the cross-
sectional area of the core. Unlike the cross-sectional area of the conductivity
of an electric wire, which is very small when used to calculate the resistivity of
the conductive material, the cross-sectional area in a magnetic circuit is not
necessarily small. Hence, magnetic fields are not really uniform.

A.4 THE MAGNETIZING CURVE

Thus far, based on the constitutive relation B = w H, it has been assumed that, regard-
less of the size of the applied mmf, the permeability of the magnetic material is con-
stant. This assumption is only true in the free space, where u, is constant. The
permeability is highly nonlinear for iron and ferromagnetic materials, as will be illus-
trated in this section.

To understand the behavior of magnetic material, we first consider the relationship
between the flux ¢ and magnetizing force Ni. Consider the structure made of a ferro-
magnetic material shown in Fig. A.9(a), with a variable mmf source. We start at point 4
in Fig. A.9(b) with the material that has never been magnetized, i.e., ¢ =i = 0. Now
we apply magnetizing force Ni to the coil; this will result in a proportional increase in

r_’(})*lu

i ! !
T !
(] |

N( i P i
T !
o—ro | |
R 1w

Py fe—

Ni  Figure A.9 Flux versus mmf in ferromagnetic material.
(a) Magnetic structure excited by mmf force. (b) Typical
() ¢ vs. Ni plot for ferromagnetic material.
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the magnetic flux to point B as shown on the curve. Notice that at this point, a small in-
crease in mmf produces a large increase in the flux, ¢. If we continue to increase the
current, a point will be reached at which any additional increase in the mmf produces
a relatively small increase in the flux, as shown at point C. At point D, any further
increase in the current produces no change in the flux. At this point and beyond, the
magnetic material is said to be in saturation. This curve is known as a magnetizing
curve. The shape of the linear region and the magnitude of the saturation vary from one
type of ferromagnetic material to another.

Another interesting property of a magnetic material is known as hysteresis. This phe-
nomenon is illustrated in Fig. A.10, where the loop 1234561 is known as the hysteresis
loop. To illustrate how this loop is created, let us assume that the applied magnetic force,
H, is produced by a sinusoidally varying excitation current. First we assume that the ma-
terial is magnetized and has reached its saturation point 1. Then when the current starts
decreasing, the magnetizing current starts following a different path. At point 2, even
though the magnetic force is zero, a magnetic flux remains in the material; By known as
residual flux or remnant magnetization. This is how permanent magnets are made. At
point 3, the material experiences a negative magnetic force that forces the flux to zero,
i.e., demagnetization. The value that causes the material to demagnetize is known as co-
ercive mmf, H . The material reaches negative saturation at point 4. As H starts increas-
ing again, the curve follows a different path until it reaches positive saturation once again
at point 1. Points 5 and 6 correspond to remnant magnetization and coercive mmf, re-
spectively. One important feature of the B-H curve is that B is not a single-valued func-
tion of H. In other words, the amount of flux at any given point in the B-H curve depends
not only on the value of H at that point, but also on the previous value of B or on the his-
tory of B. As a result, ferromagnetic materials can be used as memory devices.

The physical explanation for the behavior of magnetic material can be clearly under-
stood by studying the quantum mechanical forces between the atoms in the presence of a
magnetic field. Only a brief qualitative description of this behavior is given in this section.

All magnetic materials, whether diamagnetic, paramagnetic, or ferromagnetic,
possess net magnetic moment due to both the orbital and spinning motions of the elec-
trons in their corresponding atoms. In the absence of an externally applied magnetic
field, the degree to which the net magnetic moment exists varies between materials. In
diamagnetic materials, the net magnetic moment is zero. In the presence of an exter-
nal magnetic field, a net magnetic moment is created due to the combined interaction
between the external magnetic field and spinning and orbital electrons, which results

v

Figure A.10 B-H magnetizing
curve.
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in perturbation in their angular velocities. This effect of magnetization is very small in
this type of material and too weak to be considered for any practical application.
Moreover, diamagnetic material exhibits no permanent magnetization.

Unlike the case for diamagnetics, the magnetic moments due to orbiting and spinning
electrons in paramagnetic material do not cancel completely. When an external magnetic
field is applied, the alignment of magnetic moments in the direction of the magnetic
field takes place. Consequently, an increase in the net flux density is obtained. Still, the
resultant magnetic flux is quite small and the relative permeability of such material is close
to 1.

Unlike diamagnetics and paramagnetics, ferromagnetic material shows a high de-
gree of susceptibility to an externally applied magnetic field. In ferromagnetic
materials, it has been experimentally shown that due to the strong forces exerted
by the neighboring magnetic dipoles, which are produced from the spinning electrons
in the atoms, all the magnetic dipoles are aligned in parallel, resulting in magnetized
small regions known as domains. These domains range in linear dimension between
10°® and 10 meters, and each contains about 1016 atoms.

Figure A.11 depicts a simplified symbolic domain model, with each domain con-
taining a number of magnetic dipoles aligned in parallel to produce a magnetized do-
main, with the domains magnetized in different directions. The domains are clearly
separated by regions of hundreds of atoms. Because of the random nature of the direc-
tion of magnetization, the net magnetization of the ferromagnetic material is zero.

Under an externally applied magnetic field, some domains align themselves in the
direction of the applied field, increasing the magnetic flux density. The stronger the ap-
plied field, the more domains are aligned and the larger the magnetic flux density gets.
Depending on the type of the ferromagnetic material, there exists a certain magnetic
force beyond which the process of alignment is not reversible. In other words, once the
external field is removed, the magnetized domains do not return to their original posi-
tion. This can be seen in the B-H curve by noting that B, does not become zero once the
external field is removed. This phenomenon can be easily explained if we recognize that
if energy is needed to orient or rotate the magnetic dipoles in the direction of the exter-
nally applied field, energy must also be applied to rotate these dipoles to their original
random positions. This is why a coercive force, H -, must be applied to demagnetize the
material. Typical values of H for permanent magnets range from one hundred to thou-
sands of amperes per meter. Another way to demagnetize a ferromagnetic material is to

Magnetic
Separation dipoles
regions
between | .
d ; \I\ Magnetic
omains .
domains

Figure A.11 Schematic representation of the domain model of a ferromagnetic material.
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raise its temperature to a level that causes the domains to disorganize and return to their
random orientation. The temperature at which this occurs is known as the Curie tem-
perature, T,. Typical values of 7, range from 200 to 1000°C. Another important point
to note is that once all domains are aligned in one direction, the ferromagnetic material
becomes saturated and starts behaving like paramagnetic material, i.e., magnetically
transparent. At this point, its permeability decreases to u,,.

A.5 INDUCTORS

Inductance, whether self- or mutual, results from the application of a third Maxwell’s
equation known as Faraday’s law, which is given by
— _aB 5
VXE = T (Faraday’s law) (A.21)
By integrating Eq. (A.21) over a specified surface area, applying Stokes’s theorem to
convert a surface integral to a line integral around a path that bounds this surface, and
substituting for B = ¢/ 4, Eq. (A.21) can be rewritten as follows:

_ d¢
j£ E-d = (A.22)
C

If we assume the conducting coil has N turns, then the total flux bound by the
surface integral through which the magnetic field exists is given by N¢, which is
known as the flux linkage, as defined in Eq. (A.16). Recognizing the left-hand side of
Eq. (A.22) as an induced voltage (we also assume the electric field exists only in the
conducting wire), we may write Eq. (A.22) as

d¢

=_N4%9

¢ dt
dA

dt

(A.23)

The minus sign is expression of Lenz’s law, which indicates that the induced voltage
opposes the increase in the flux flow.

EXAMPLE A4

Consider the toroidal structures shown in Fig. A.12.

w=2000pu,
r=20cm
@ =100 ®)

Figure A.12 Magnetic structures for Example A 4.

—®
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(a) Determine the inductances for both the ungapped and gapped magnetic structures made
from the same material shown in Fig. A.12(a) and (b), respectively.
(b) If the permeability of the magnetic material is increased by 15%, determine the inductances
of part ().
SOLUTION (a) The cross-sectional area is given by
A = mr?
=0.7854 x 10~

The total reluctance of the ungapped core is given by

= 159154.6 A-turn/Wb
The reluctance of the gapped core is given by
27r -1, N l&.

rer U A

= 4.0524 x 10° A-turns/ Wb

Hence, the inductances of the gapped and ungapped cores are given by

NZ
L =
gap 9{T’ aap
=24.68 uH
N2
[ =—
Ry
= 62.8 mH

(b) If w is increased by 15%, then the new reluctances for w = 23000 w,, are
R, =1.384x10° A-turn/Wb

R = 3.524 x 10 A-turn/Wb

T, gap
resulting in the following new gapped and ungapped core inductances:
L,,, = 2838 uH

L =722mH

It is important to notice that an increase of 15% in w results in an increase of 15% and 0.25% in
the inductances of the ungapped and gapped core structures, respectively.

A.6 TRANSFORMERS

The typical structure of a transformer with two windings on a common core is shown
in Fig. A.13. When one of the windings with N, turns (primary) is excited by an exter-
nal source, an induced voltage is created in the other winding with N, turns (second-
ary). This is because both windings share the same magnetic core and, consequently,
link the same flux. Depending on the power rating, operating frequencies, and intended
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i ! . | i
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- (*) (—r) -
o+—— | | —>—o0
e i Figure A.13 Magnetic structure
of a two-winding transformer.

application, various types and shapes of core structures are used. Line-frequency trans-
formers (50 Hz, 60 Hz, or 400 Hz) are normally used for isolation and stepping down/
up the primary voltage. Depending on whether they are used for distribution, transmis-
sion, or household applications, the power rating varies widely. In power electronics
applications, high-frequency transformers are very common, whose functions are
mainly to transfer voltage, provide isolation, and store energy. Special types of trans-
formers are used in instrumentation for sensing purposes. For example, potential and
current transformers are used to sample a high primary voltage and a high line current,
respectively. Regardless of their application, transformers generally have four relevant
ratings: voltage, current, apparent power, and frequency. The apparent power (the
product of the rms current and the rms voltage) sets the limit on the maximum /2R loss
in the transformer windings in order to limit heating of the transformer coils, which
could damage the insulation or drastically shorten the transformer’s life. Transformer
voltage and frequency ratings serve two purposes: to limit the core losses and to pre-
vent the transformer from saturation, as explained later in this section. Depending on
the number of windings on a shared magnetic circuit, transformers can be single- or
multiple-phase types. Because of their widespread applications, we will study only the
single-phase and three-phase transformers.

A.6.1 Ideal Transformers

The operation of an ideal transformer is easy to understand because it’s assumed that
both coil and core losses are negligible and the two windings (primary and secondary)
are perfectly coupled; i.e., they are linked with the same flux. Since the majority of the
applications of a transformer are for voltage stepping and voltage isolation, its terminal
voltages are important parameters. Because of this, additional expressions are needed
to relate the voltage with the magnetic field and flux. The key relation in understanding
the transformer operation is Faraday’s law, which is given by

jﬁ E-dl = fi{? (Faraday’s law) (A.24)

C
The left-hand side of Eq. (A.24) is an expression of the induced voltage or emf result-
ing from the presence of the magnetic flux, ¢. In other words, Faraday’s law states
that the induced voltage across a conducting wire is proportional to the rate of change
of the flux through the wire with respect to time. If we assume the conducting wire
has N turns, then Eq. (A.24) can be rewritten in terms of the total induced voltage as
follows:

— _ndd
V(1) =-NE (A.25)
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Applying Eq. (A.24) to the transformer shown in Fig. A.13, we obtain

d

v (t) = —Nl% (A.26)
d

vy(t) = —de—(iz (A.27)

where ¢, and ¢, are the fluxes in the primary and secondary windings, respectively.
Since perfect coupling is assumed, ¢, and ¢, must be the same; consequently, the
terminal voltage relation for the transformer is given by

oM (A.28)

v, N .
Since we also assume no losses, the total input and output powers must be equal;
hence, the following terminal current relation can be obtained:

h_M (A.29)

N '

As stated earlier, one function of the transformer is impedance transformation. If

an impedance Z; is connected across the secondary winding, then it can be easily
shown that the input impedance seen in the primary winding is given by

2

N

Zin = ZL(]VIJ (A.30)
2

This equation is useful when the entire circuit is to be reflected from one side of the
winding to the other side. This approach could simplify the analysis of complex circuits.

To identify the direction of the windings, whether clockwise or counterclockwise,
a “dot” convention has been adopted. If the positive reference direction of either volt-
age is applied to one winding, then the dotted end of the other winding is positive. For
example, in Fig. A.14(a) and (b) the windings for the primaries are wound in the
counterclockwise direction and the secondaries are wound in the counterclockwise
and clockwise directions, respectively.

_>¢ i2 —>
i |® “—<+—0 i |® e ip
c+:(: N("’)+ c+:(: (=
2 v o
Vi (:) Nj E—") 3 V1 (*) Ny Ny (*) V2
_ —-O0 S D —
ooy D ° o—ij P G °
N12N2 N12N2
[) [ OJ
o

(a) )

Figure A.14 Transformer “dot” notation. (a) The primary and secondary are wound in the
counterclockwise direction. (») The secondary is wound in the clockwise direction.
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EXAMPLE A.5

Consider an RLC load connected to the secondary side of a transformer in a converter circuit as shown
in Fig. A.15(a). Draw an equivalent circuit by reflecting the entire load circuit to the primary side.

N]INZ

o

[ [ ] L

‘ T
o L
(@)

2

(N/Np)2L Ni:N,

(Ny/NpY*C (N2/N1Y*R

Figure A.15 (a) Transformer circuit with LRC
used. (b) Equivalent circuit of (a) with the entire
(b) secondary side reflected to the primary side.

SOLUTION The resultant configuration is shown in Fig. A.15(). The terminal voltage and current

are scaled by N,/N, and N,/N,, respectively.

A.6.2 Nonideal Transformers

The practical transformer is far from ideal due to the following nonidealities that are
always present in the magnetic structure.

Nonperfect Coupling

Practical transformers are not perfectly coupled. This is because the flux linkage between
the two windings is not the same; some flux leaks into the surrounding medium. As stated
earlier, unlike in electric circuits, the air permeability is only a few orders of magnitude
smaller than the core permeability, resulting in a small flux leaving the magnetic path and
returning through the air as shown in Fig. A.16. This leaked flux is the origin of the

Coupling flux
A
S .
o ¢ Pl
131 i 1)
o > 4

Figure A.16 Transformer
magnetic structure illustrating
Leakage flux coupling and leakage flux.
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Ni:N»
o— Y M MY o
°
+ Ly Liz +
V1 | 1)
o o
Ideal

Lo
Figure A.17 Transformer model
including (@) primary and secondary
O leakage inductances, and (b)
Ideal magnetizing inductance reflected in the
(b) primary side.

imperfection in coupling. To simplify the analysis and design of transformer circuits, it
is always useful to come up with models for any nonidealities. The leakage flux in the
primary and secondary windings is normally modeled by two series inductive elements
known as leakage inductances, L,; and L, respectively, as shown in Fig. A.17.

It is clear from Fig. A.17(a) that because of the presence of L, and L,,, the termi-
nal voltage relation given in Eq. (A.28) is no longer valid. Voltage drops are present
across these inductances, resulting in energy loss and, therefore, less efficiency. The
need to understand leakage effects and their origins is not due to concern for effi-
ciency. In fact, when high-permeability cores are used with good coupling, it is com-
mon to design transformers with efficiency above 90%. The major concern is with the
adverse effects these leakage fields have on the overall transformer performance. This
concern is more serious in high-frequency power electronics applications, where the
voltage drops across these leakage inductances become very large, causing regulation
problems. An additional drawback in such applications is when the leakage inductors
form resonating circuits with the distributed capacitances of the transformer windings
and other diode and transistor junction capacitors, causing high voltage and current
peaks that could damage the power switching devices and other circuit components.

Modeling the leakage effects in transformers as linear, lumped inductor elements
in series with both windings with assumed constant values for a large range of operat-
ing frequencies is very accurate since the major portion of the closed leakage flux is
through the air with constant permeability.

Finite Permeability

The permeability of the core is not infinite. Therefore, in order to produce a flux in the
secondary winding, the primary winding must be excited by Ni. Even when the sec-
ondary winding is open-circuited, the primary current needed to magnetically couple
the secondary winding will not be zero. This current is known as magnetizing current
and flows through the magnetizing inductance, L,. Depending on the winding at
which L, is measured, magnetizing inductance can be modeled at both windings.
Normally, the magnetizing inductance is modeled as a shunt finite element in the pri-
mary side as shown in Fig. A.17.
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The magnetizing current, i,,, shown in Fig. A.17(b) is the current required to cre-
ate the flux in the primary winding. Theoretically speaking, if u of the core is infinite,
then it is possible to produce the flux in the primary winding, consequently coupling
the secondary winding without magnetizing current. This represents the case for an
ideal transformer with infinite L,,. Note that under dc excitation, the input current to
the transformer, i1, is zero since the magnetizing inductance becomes short-circuited.

Core Losses

Nonideal transformers experience two types of core losses: hysteresis and eddy current
losses, to be discussed in Section A.6.6. Because of these losses, additional current to
i,, will flow in the primary winding, even when the secondary winding is open-circuited.
This current is known as core current, i.... Figure A.18 shows a modified equivalent

> “core*
transformer model including a shunt resistor, R,., across L,, to model the core losses.

core?

Copper Loss

Due to the current conduction in both winding coils of the transformer, usually additional
equivalent resistors, Rq,; and R, are placed in series with L;; and L, to model the cop-
per losses in the primary and secondary windings, respectively, as shown in Fig. A.19.

A more simplified model, known as a transformer 7 model, can be obtained by
reflecting the secondary-side circuit to the primary side as shown in Fig. A.20.
Furthermore, if we assume that the magnetizing current is smaller than the terminal
current, iy, it is possible to further simplify the transformer model of Fig. A.20 as shown
in Fig. A.21. The reflected equivalent resistance and inductance are given by

N Y
Req = RCul + ]Vz RCuZ
N 2
— 1
Lk,eq - Lkl + (]Vz] Lk2

N]ZNZ

v,  Figure A.18 Transformer
model including the core

o losses and the leakage and

Ideal magnetizing inductances.

L Rcuw2

V2

Ideal

Figure A.19 Transformer model including the core losses, leakage and magnetizing
inductances, and copper losses.
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(No/N D

2
(N1/N)“Ly (NI/N2)2RCu1

(N1/N2)vy

[ ¢ ® o

i (V2N

+

+
" (N1/N2)v,

- Figure A.21 Simplified

o ® ® o transformer model of Fig. A.20.

We should point out that the parasitic capacitance has not been included in the model
since its effect becomes dominant only at extremely high frequencies.

A.6.3 Transformer Equations

In the previous section, we described the model of a nonideal transformer using its
leakage and magnetizing inductances as well as its coil and core losses. However, a
more useful way to represent a nonideal transformer is by describing its terminal volt-
ages and currents as linear time-invariant coupled-circuit differential equations in
terms of self- and mutual inductances.

Consider a two-winding transformer as shown in Fig. A.22 including the effect of the
primary and secondary leakage flux N,i; and N,i,, respectively. The mutual fluxes ¢,,,
and ¢,,, produced by N,i, and N,i, are also shown in the figure. The total fluxes produced
at the primary and secondary windings are given in Eqs. (A.31) and (A.32), respectively.

T (A31)
b= bt byt b (A.32)
Applying Faraday’s law to Egs. (A.31) and (A.32), we obtain
d
" (A.33)
d
= Nlc?t(d)” t ¢+ N, d;nz
i > bl .
o d > i i « o )
+ q | | D +
1 ¢
v Ny ! 12 | )
+ ] D
o——1 | | — o Figure A.22 Transformer
! ! magnetic core with mutual and
——————— b2 4 ——————~1 1
eakage fluxes.
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do
v, = de_tz
i (A.34)
d m
= szt(d’zz t ¢ tN, 7 1
The self-inductances of the primary and secondary are defined as follows:
N +
Ll — l(d)lli d’ml) (A.35)
1
N. +
L2 — 2(¢12. m2) (A.36)

)

The mutual inductances at the primary and secondary windings are defined as follows:

b,

Ly = 11—2 (A.37)
2

Ly = Nz% (A.38)

I

Ifthe magnetic structure is reciprocal, then L,, = L,, = M; hence, Eqgs. (A.37) and (A.38) give

N

Ly=L, +—=M (A.39)
N2
N.

Ly=1L;,+ =M (A.40)
Nl

From Egs. (A.33), (A.34), (A.39), and (A.40), the transformer equations in terms of
terminal voltages and currents are given by

di,  di
V=Lt M2 (A41)
— Uy 9 A42
Va a7 277 ( )

A.6.4 Leakage Inductances

Calculating the leakage inductance of a given magnetic geometry for an inductor
or transformer is not a straightforward problem. Detailed dimensions of the
windings and their physical location in the magnetic structure must be known;
only then can an estimate of the leakage inductance be obtained. To minimize
the transformer leakage inductances, normally the two windings are placed one
on top of the other to enhance the flux linkage. It can be shown that if the num-
ber of turns, winding thickness (build-up), and insulation thickness (space be-
tween windings) are decreased and the winding length is increased, a smaller
leakage inductance can be obtained (see Problem A.21). Furthermore, it is possi-
ble to experimentally determine the total leakage inductance of a transformer by
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Figure A.23 Toroidal inductor
with air gap.

performing two measurements known as open- and short-circuit tests, as illus-
trated in Problem A.15.

A.6.5 Saturation

As stated earlier, when the magnetic material saturates, a large change in the excita-
tion current in the primary of the transformer results in no change in the coupling
flux. The core becomes magnetically transparent. In limited applications, such as
magnetic amplifiers and fluorescent lamp ballasts, the saturation property of the
magnetic material is essential. Otherwise, saturation is avoided in most applica-
tions. Voltage, current, and frequency may cause the core to saturate as illustrated in
the air-gapped toroidal inductor shown in Fig. A.23.

The inductance of Fig. A.23 can be shown to be independent of the permeabil-
ity of the material if we assume /, >> /p,/ . Since at saturation the permeability
of the core reduces to that of the air, this relation no longer holds. Consequently,
the inductance becomes a function of both permeability and material type, and
therefore unstable. The question normally asked is, when does the core saturate? It
is obvious that the core saturates when its magnetic density, B, exceeds B, of the
material. Since the external terminals of any transformer and inductor are voltages
and currents, it is more useful to address the question of saturation in terms of
these parameters. If we assume the excitation voltage in Fig. A.23 is a sinusoid
given by v (1) = ¥V sinwt, then it can be shown that the following relation must hold
to avoid saturation:

V
S <2mB A (A.43)
N sat

where 4 is the core cross-sectional area, V is the maximum voltage, and fis the fre-
quency of the applied signal. The left-hand side of Eq. (A.43) gives the maximum
volts per turn allowed to prevent saturation. If the peak voltage is fixed, it is possi-
ble to set a limit on the minimum frequency necessary to avoid saturation, which is
given by

14

Smin = TNABL. (A.44)
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A.6.6 Magnetic Losses

Two types of losses exist in magnetic structures: core losses and copper losses.
The copper losses exist in the winding coils due to the current conduction and are
given by

PCu = [rzmsRCu (A45)

The core losses are attributed to both hysteresis losses and eddy current losses.
The former are the result of unrecovered energy spent in the constant rotation or
realignment of magnetic domains within the magnetic material. The larger the area
enclosed by the hysteresis loop, the higher the loss. The loss due to the hysteresis loop
is proportional to the frequency and magnetic field:

Py o<fBy 22n215 (A.46)

The energy lost due to eddy currents is proportional to the square of the frequency and
the square of the magnetic field:

2
Pegqy </ B? (A.47)

The larger the size of eddy current loops, the higher the losses within the core. To
break these loops into smaller ones, it is customary to use small stripes on lamination
cores.

A.6.7 Core Material and Types

The choice of the appropriate type and shape of core material has become an extremely
important consideration in designing inductors and transformers for today’s power cir-
cuits. This is in large part due to a substantial increase in the operating frequencies of
power converters, which have reached 5—10 MHz. This push for higher and higher fre-
quencies is mainly driven by the ever-increasing demand for smaller and lighter power
converters. At these frequencies, smaller magnetic components can be used; also, the
effect of the leakage inductances, self-capacitance of the winding, and inter-winding ca-
pacitance could become more significant. As a result, the choices of magnetic material,
core geometry, conducting wires, and fabrication techniques are challenging consider-
ations. The following four types of material are currently in wide use in the design of
magnetic circuits.

1. Air-core. This type of core is used when magnetic field distortion due to the
nonlinearity of the magnetic structure is not desirable. Air-core structures pro-
duce stable inductor and transformer values, since w, is constant. The winding
is normally wound around a prefabricated form to sustain it.

2. Laminated iron. This material is used to minimize the effect of eddy current
losses. This is achieved by coating lamination with some sort of electric insu-
lation. Iron lamination cores are used mostly in line- and low-frequency appli-
cations. Lamination thickness and number, as well as the size of the air gap,
are some design parameters.

3. Powdered iron. Depending on the core geometry, this type is normally used
for frequencies up to 1 MHz and in high-Q inductors. The core losses and per-
meability are normally controlled by the size and composition of magnetic
particles.




N
%\é | 635 BatAppA.fim Page 520 Friday, February 28, 2003 3:16 PM

520 Appendix A Introduction to Magnetic Circuits

Nonmagnetic core
(ceramic or cardboard) C-1

(a) (b)

E-1 Toroid
(©) (d)
Figure A.24 Different types of cores. (@) Nonmagnetic. (), (¢), (d) Magnetic.

4. Ferrite. Because it has high permeability and high resistivity to eddy currents,
ferrite core material is used in high-frequency applications up to 100 MHz.
However, its B, is much lower than that of laminated or powdered iron core
materials. As a result, ferrite cores are limited to lower-current applications.
They also have a relatively low Curie temperature. Nevertheless, the ferrite
core type is the most popular in the design of high-frequency power
electronics.

Figure A.24 shows different shapes of cores widely used in today’s power elec-
tronics applications. Generally speaking, the shape and geometry of magnetic cores
are dictated by various electrical and electromechanical requirements. Examples of
core arrangements are pot, toroid, E-I, and C-1.

A.7 THREE-PHASE TRANSFORMERS

Three-phase systems are the most popular ac electrical systems in the world, whether
generated, transmitted, or distributed. This is in large part due to the economic
advantages in the distribution and generation of three-phase systems using rotating
machines. Moreover, unlike the power in single-phase systems, the total instantaneous
power in a three-phase system is constant. This interesting feature of three-phase
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v = Vgsin wt
vp = Vs sin (w1 - 120°)
Ve = Vi sin (ot —240°)

Figure A.25 Y-connected three-
phase system.

Vap = Vg sin ot
Vpe = Vi sin (wt — 120°)
Vea = Vi sin (wtf —240°)

Figure A.26 A-connected three-
phase system.

systems makes them attractive for power rotating machinery since it causes less
vibration compared to a single-phase system, whose instantaneous power frequency is
twice the line frequency.

Because of their importance in the implementation of three-phase systems, three-
phase transformers are important devices in modern power electronic systems. Hence,
a brief discussion of three-phase transformers is presented in this section.

Depending on whether the voltage source has a common reference point,
known as the neutral point, voltages in three-phase systems can be represented as
wye (Y) or delta (A) connections. In both system configurations, the voltage
sources are equal in amplitude and frequency and have a 120° phase shift between
each other. The Y-connected three-phase system is shown in Fig. A.25, where cur-
rents i, i, and i, are line currents and voltages v, v,., and v_, are line voltages. It is
apparent from Fig. A.25 that the line currents are the same as the phase currents,
and it can be easily shown that the amplitudes of the line voltages are increased by
J3 and phase-shifted by 30° from the phase voltages, v,, v,, and v,. Figure A.26
shows the alternative way of connecting three-phase voltages, the A connection.
Notice the line voltages and the phase voltages are the same, whereas the line cur-
rents i, i, and i, have magnitudes /3 times the magnitude of the phase currents i,
i.p, and i,. and are shifted by 30°.

One easy and straightforward way to make a three-phase transformer is to take
three single-phase transformers and connect them in various A and Y configurations.
An alternative way is to use a common core to create a set of three windings as shown in
Fig. A.27. For economy and to increase efficiency and power density, this approach is
more common these days. Like the voltage source connections in a three-phase system,
each of the windings in the three-phase transformer can also be connected in A and Y
configurations. As a result, there are four possible three-phase transformer connections:
A-A, A-Y, Y-A, and Y-Y. Examples of a Y-A connection created from three single-
phase transformers and a common core structure are shown in Fig. A.28(a) and (b),
respectively, with the equivalent transformer schematic shown in Fig. A.28(c¢).
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Figure A.27 Three-set of
windings on a common core.
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(c) representation.
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PROBLEMS

A.1 Consider a coaxial line consisting of a solid
inner and outer conductors of thickness a and
(c—b), respectively, each carrying current /, as
shown in Fig. PA.1. Show that the magnetic field
is expressed in the following function:

Ir 0<r<a
2a?
L a<r<b
H=!27r
LM b<r<ce
27r(c? - b?)
0 c<t<oo
%E
I | A
w
1
o—»
(N
(\)N: 100 /=30cm
(\) o
Ot ) w
b
w Iw:Scm X
(@)
Iw:lOcm
3 «—o0
I= T Ba=100
50em | [%7] ] (____)
q — o
<>
IW w
) [=80cm .
()
Figure PA.2

523

Problems

Assume the currents are uniformly distributed and
the current into the solid inner conductor equals
the current in the outer shell.

A.2 By using the magnetic circuit approach, de-
termine the inductances of the magnetic structures
shown in Fig. PA.2. Assume u = 2000 u, and the
depth of the core cross-section is 4 cm.

A.3 Repeat Problem A.2 for Figure PA.2(a) and
(d) by assuming the permeability of the core is de-
creased by 20%. Determine the percentage change
in the new inductance values.

A.4 Consider Fig. PA.2(e) with i =4 A flowing in
the 250-turn coil. Determine the flux, flux density,
and magnetic field intensity in each leg segment.

Figure PA.1
Iw
1

o—>

4 ;=20

(\)Nzlo() —tl,=2cm

(\) >
[o ) w

e

w Iw:Scm

) [=30cm g

®)
Iw: 10 cm
«—o0
I_I —1
l= l,=2cm} b N=100
50cm | [ ¢ l:‘ (_____)
) q L— o
W <>
i !

h
v




%

| (ﬁg BatAppA.fm Page 524 Friday, February 28, 2003 3:16 PM

524 Appendix A Introduction to Magnetic Circuits

Figure PA.2 (continued)

A A
w=10cm
v
[«
[ S—
N=250 ¢ P
o—
:lg:()_jcm [=45cm
— o
A
w
v v
(@)
|_ _____ " __________ —I _—— = -’ 4
il !
o—»— |
(NN :
N=250 ¢4 i [ =40 cm
' v
o— 1P
|
|
v
) I=120cm g
Width =5 cm
Depth =5 cm
A
i
i=5A
o>
I N =500 42 =ty
2 ‘\) —v g
o— P
(W) (W) (W)
v IWI
h h wp=6cm
wp =3 cm
Depth =5 cm
2[; =80 cm
I =40 cm
w=1300 w,

A.5 Consider the magnetic structure shown in
Fig. PA.5 with w = 3000 w,. Determine the coil
current that will produce 0.4 T in the center leg.
A.6 It is desired to produce a flux of 1.5 mWb in
the air gap of the core shown in Fig. PA.6. Deter-
mine the air gap that will establish this flux.

A.7 Determine the inductance of a coil wound in
air with the dimensions shown in Fig. PA.7 for /,=0,
0.5,and 1 cm.

A.8 Consider a toroidal coil structure with N turns
wound around a circular cross-sectional core as

Figure PA.7

Figure PA.S

Figure PA.6
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shown in Fig. PA.8(a). Assume the resistance of the
copper coil is modeled by R, resulting in a possi-
ble equivalent circuit as shown in Fig. PA.8(b).

(a)

Rey

bo

P(n)
)
Figure PA.8

(a) If the excitation current is sinusoidal,
i(t) =1,sinwr, show that the instantaneous
power at the terminals ab is given by

2
. pAlZw .
t) = R I*sin? wt + ——£_ cos wtsin wt
P Cu'p m(b+a)

(b) Show that the average input power between
the terminals ab is given by

Pave = RCuEP

Area

SmmI

8 mm

Problems 525
(¢) Show that the total instant energy stored in the
magnetic field is given by

_m(b-a)(b+a)

W 5

A.9 Consider the air-gapped toroidal core with
the dimensions shown in Fig. PA.9.

(a) Determine the inductance L.

(b) Repeat part (a) for p= 500 p,.

(¢) Determine the minimum length of the air gap,
l,, so that the inductances obtained in parts (@) and
(b) are within +2%.

A.10 Figure PA.10 shows a square core with air
gap, /,. Assume the applied voltage is sinusoidal
with peak voltage 3000 V and frequency 60 Hz,
and u = 4500 w,.

(a) Determine the maximum flux ¢.

(b) If B, = 2.2 T, determine the minimum fre-
quency that will keep the core out of saturation.

A.11 The fringing effect and leakage flux could
affect the value of the inductance. Consider the
magnetic circuit with air gap given in Fig. PA.11.
(a) Calculate L with leakage flux and fringing ef-
fect negligible.

(b) Repeat part (a) by assuming that the air-
gapped effective area is increased by 5%.

(c¢) Repeat part (b) by further assuming that 5% of
the produced flux leaks to the surrounding air.

(d) What is the percentage change of the calcu-
lated inductances of parts (b) and (c) with respect
to part (a)?

A2 A group of electromechanical devices
known as actuators consist of fixed and movable
sections of ferromagnetic material. When excited
by injecting current, i, the resultant magnetic field
magnetizes the movable part and consequently
lifts a mechanical load. Figure PA.12 shows one
possible ferromagnetic structure for an actuator.
Assume B, = 1.2 T and p = 2000w, and ignore

sat

leakage flux.

r=25cm

Figure PA.9
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¢
—————— > w
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. |
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+ | P
|
. ! N ! lg=5cm
|
|
_ : < » Depth = 10 cm
w=10cm
o—, I
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! X
|
———————— w
v
=100 cm Figure PA.10
T > ¢
I
|
|
I
o—> t
|
( | [=100 cm
SR ()
( : AAAS lg =8cm
| k Depth=5cm
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|
|
X i " Figure PA.11
) 600 cm R
270cm 270cm
Fixed part —p| N
o— D Depth =5 cm
14
™
(\
o—o D
I lg=5cm
Movable part
P Figure PA.12

(a) Determine the maximum air-gap flux produced
in the center leg.

(b) Determine the current i that would produce a flux
density equal to 0.5B, in each of the two side air
gaps.

A.13 Determine the maximum air gap, /,, needed
to establish 0.8B, in the center leg for i = 10 A in

Problem A.12.

A.14 Consider atransformer with a turnratio NV,/N,
=200 and rated at 240 kVA (44 kV/220 V) used to
step down a 60 Hz voltage in a distributed system.
(a) Determine the rated primary and secondary currents.
(b) Determine the load impedance seen between the
primary terminals when the load is fully loaded.




%
%\é | /éﬁ BatAppA.fm Page 527 Friday, February 28, 2003 3:16 PM

A.15 (a) A 60 Hz, 110 VA rms voltage is applied
to the primary of a transformer with the secondary
winding left open-circuited. The following two
measurements are obtained:

(i) The primary current is found to be 5 A rms.
(if) The average (real) power between the primary
terminals is found to be 80 W.

This test is known as the open-circuit test. Use the
transformer equivalent circuit shown in Fig. A.20
to determine the core resistance R, and the mag-
netizing inductance L,,. (Hint: Assume the voltage
drops across R,; and L, are negligible.)

(b) With the same applied voltage as in part (a),
the output voltage is shorted and the short-circuit
current is measured and found to be 150 mA rms,
and new measurements are taken as follows:

(?) The primary current is found to be 40 mA rms.
(if) The average power at the primary terminal is
found to be 25 W.

This test is known as the short-circuit test. Deter-
mine the total copper resistance, R, given by

N Y
Rey =Rey t+ ]\72 Reyo

(Hint: Assume the current in the magnetizing cir-
cuit, R .. and L, is negligible.)

A.16 Because of the series impedance in the pri-
mary side of the transformer, the output voltage will
change under various load conditions, even ifthe in-
put voltage remains constant. The degree to which
the output voltage change between low-load and
full-load conditions is known as load regulation,
LR, defined as

core m>

vu,l - vu,f

LR = 100%

Vo.f

|
Zn : Reore
|

527

Problems
where v, and v, rare the low- and full-load output
voltages, respectively. This parameter is very im-
portant to the design of transformers.

(a) Using the simplified transformer equivalent

circuit given in Fig. PA.16 with load impedance Z,,
show that LR is given by

ZsZm(Zl, 1~ Zl,f)

LR =
(Zle, 1 + ZsZm + Zle, I)Zl,f

where Z, -and Z,, indicate the load impedance at
full- and low-load conditions, respectively.

(b) If the low-load condition occurs at Z; ; = oo
and assuming R, = and R, =0 (), show
that LR is given by

2
w[l‘kl + (%J Lsz
2
|Z,, 41
(¢) Ifa 250 kHz input voltage source with ;=200 V is
applied to the primary winding, determine LR for the
following values: R, = 0.2 Q, L., = 125 uH, R, =
125 Q, L, =450 pH, Z, , = 5726° Q,and Z, , =
0.5£78° Q).
A.17 1t is customary to represent transformers by
their primary and secondary coupling coefficients
k, and k,, respectively. If k| and k, are defined as

LR =

ko= Lml
'L, L
L
kz — m?2
Lm2 +Lk2
M= [kk,

show that the transformer model given in Fig.
A.20 can be presented as shown in Fig. PA.17.

Lieq=Lxt + NV 1IN Ly
Req=Reu + (NN Roua

Figure PA.16
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i (1=kpLyy (NIINDX(1=kp)Lyy  (NY/NDR,
Figure PA.17
- | | ‘
+ T+ -
v N R
— < B g > 3 T % RV,
Vie = | |
1l +
I
_ f Figure PA.18
° ~ A
+ Ll
i
° :
Figure PA.19
A.18 Insome power electronic circuits where more d =20 mm
than one inductor is used, it is desirable to imple-
ment two or more inductors on a single magnetic @
structure. Such inductors are known as coupled in- o— s
ductors. The Cuk converter shown in Fig. PA.18 is [ o
one example of a coupled inductor circuit. N=40 ¢ D
If it is assumed v, and v, are identical ac voltages ]
and the leakage inductances of the N, and N, -~
windings are modeled by R, and R, , respec- —
tively, show that:
Figure PA.20

(a) The current #,(z) = 0 when

N
Ny R+ R,
(b) The current i,(¢¥) = 0 when
Mo R
N, R,+R,

where R, is the total reluctance of the magnetic
circuit, including the reluctance of the air.

A.19 Derive the equivalent circuit for Fig. PA.19
by reflecting the entire impedance to the primary
side. Assume ideal transformers.

A.20 Determine the inductance of a coil wound in
the air as shown in Fig. PA.20.

A.21 To reduce the transformer leakage induc-
tances, normally the primary and secondary wind-
ings are placed one on top of the other as shown in
Fig. PA.21(a). By assuming that the magnetic field
is distributed as shown in Fig. PA.21(b), derive an
expression for the leakage inductance in terms of
the given parameters. Assume the cross-sectional
area of the core is 4 and the number of turns is N.

A.22 Itis common to find transformers with more
than two windings on a single core. Figure
PA.22(a) and (b) shows a transformer structure
with two and three windings respectively. Assume
that the cross-sectional area of the center leg is 4,
and that of the remaining parts is 4,.
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o
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0 0
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T 5
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~ ~ 1
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| vl |
Figure PA.24

(a) Develop the magnetic circuit equivalents of
these structures

(b) Determine the flux in the center leg in terms of
the shown parameters.

A.23 Derive the expression for the flux, ¢, in the
center leg of the magnetic circuit of Fig. PA.23.
Assume uniform cross-sectional area 4 and width
W. The flux will be expressed in terms of N, N,,
N3, iy, by, i3, Zg, I, w, 4, and u.

A.24 Determine the voltage, v, in terms of the
given parameters in the three-winding magnetic
circuit shown in Fig. PA.24. Assume the cross sec-
tional area is 4 and the permeability is .

A.25 (a) Determine the flux in the center leg of
the three-winding magnetic structure shown in

Fig. PA.22(b). Assume N,i;, N,i,, and N;i; are 5,
10, and 8 A-turn, respectively, and = 3000 w,.
(b) Determine the inductance for winding N, with
iy=i;=0.

A.26 Show how a set of three single-phase trans-
formers can be connected to create a three-phase con-
figuration for each of the following connections:
(a) Y-A

(b) A-Y

(c) A-A

A.27 Show that in a balanced Y-connected three-
phase system, the line currents and the line volt-
ages are also balanced three-phase systems.




